

Welcome to TES3MP’s documentation!

Contents:

	TES3MP’s Lua API reference
	Actor functions

	Book functions

	Cell functions

	Char class functions

	Chat functions

	Dialogue functions

	Faction functions

	GUI functions

	Item functions

	Mechanics functions

	Miscellaneous functions

	Object functions

	Position functions

	Quest functions

	Records Dynamic functions

	Server functions

	Setting functions

	Shapeshift functions

	Spell functions

	Stats functions

	Worldstate functions

TES3MP’s Lua API reference

Table of Contents

	Actor functions

	Book functions

	Cell functions

	Char class functions

	Chat functions

	Dialogue functions

	Faction functions

	GUI functions

	Item functions

	Mechanics functions

	Miscellaneous functions

	Object functions

	Position functions

	Quest functions

	Records Dynamic functions

	Server functions

	Setting functions

	Shapeshift functions

	Spell functions

	Stats functions

	Worldstate functions

Actor functions

	
class ActorFunctions

	
Public Static Functions

	
static void ReadReceivedActorList() noexcept

	Use the last actor list received by the server as the one being read.

	Returns

	void

	
static void ReadCellActorList(const char *cellDescription) noexcept

	Use the temporary actor list stored for a cell as the one being read.

This type of actor list is used to store actor positions and dynamic stats and is deleted when the cell is unloaded.

	Parameters

	cellDescription – The description of the cell whose actor list should be read.

	Returns

	void

	
static void ClearActorList() noexcept

	Clear the data from the actor list stored on the server.

	Returns

	void

	
static void SetActorListPid(unsigned short pid) noexcept

	Set the pid attached to the ActorList.

	Parameters

	pid – The player ID to whom the actor list should be attached.

	Returns

	void

	
static void CopyReceivedActorListToStore() noexcept

	Take the contents of the read-only actor list last received by the server from a player and move its contents to the stored object list that can be sent by the server.

	Returns

	void

	
static unsigned int GetActorListSize() noexcept

	Get the number of indexes in the read actor list.

	Returns

	The number of indexes.

	
static unsigned char GetActorListAction() noexcept

	Get the action type used in the read actor list.

	Returns

	The action type (0 for SET, 1 for ADD, 2 for REMOVE, 3 for REQUEST).

	
static const char *GetActorCell(unsigned int index) noexcept

	Get the cell description of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The cell description.

	
static const char *GetActorRefId(unsigned int index) noexcept

	Get the refId of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The refId.

	
static unsigned int GetActorRefNum(unsigned int index) noexcept

	Get the refNum of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The refNum.

	
static unsigned int GetActorMpNum(unsigned int index) noexcept

	Get the mpNum of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The mpNum.

	
static double GetActorPosX(unsigned int index) noexcept

	Get the X position of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The X position.

	
static double GetActorPosY(unsigned int index) noexcept

	Get the Y position of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The Y position.

	
static double GetActorPosZ(unsigned int index) noexcept

	Get the Z position of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The Z position.

	
static double GetActorRotX(unsigned int index) noexcept

	Get the X rotation of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The X rotation.

	
static double GetActorRotY(unsigned int index) noexcept

	Get the Y rotation of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The Y rotation.

	
static double GetActorRotZ(unsigned int index) noexcept

	Get the Z rotation of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The Z rotation.

	
static double GetActorHealthBase(unsigned int index) noexcept

	Get the base health of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The base health.

	
static double GetActorHealthCurrent(unsigned int index) noexcept

	Get the current health of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The current health.

	
static double GetActorHealthModified(unsigned int index) noexcept

	Get the modified health of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The modified health.

	
static double GetActorMagickaBase(unsigned int index) noexcept

	Get the base magicka of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The base magicka.

	
static double GetActorMagickaCurrent(unsigned int index) noexcept

	Get the current magicka of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The current magicka.

	
static double GetActorMagickaModified(unsigned int index) noexcept

	Get the modified magicka of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The modified magicka.

	
static double GetActorFatigueBase(unsigned int index) noexcept

	Get the base fatigue of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The base fatigue.

	
static double GetActorFatigueCurrent(unsigned int index) noexcept

	Get the current fatigue of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The current fatigue.

	
static double GetActorFatigueModified(unsigned int index) noexcept

	Get the modified fatigue of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The modified fatigue.

	
static const char *GetActorEquipmentItemRefId(unsigned int index, unsigned short slot) noexcept

	Get the refId of the item in a certain slot of the equipment of the actor at a certain index in the read actor list.

	Parameters

	
	index – The index of the actor.

	slot – The slot of the equipment item.

	Returns

	The refId.

	
static int GetActorEquipmentItemCount(unsigned int index, unsigned short slot) noexcept

	Get the count of the item in a certain slot of the equipment of the actor at a certain index in the read actor list.

	Parameters

	
	index – The index of the actor.

	slot – The slot of the equipment item.

	Returns

	The item count.

	
static int GetActorEquipmentItemCharge(unsigned int index, unsigned short slot) noexcept

	Get the charge of the item in a certain slot of the equipment of the actor at a certain index in the read actor list.

	Parameters

	
	index – The index of the actor.

	slot – The slot of the equipment item.

	Returns

	The charge.

	
static double GetActorEquipmentItemEnchantmentCharge(unsigned int index, unsigned short slot) noexcept

	Get the enchantment charge of the item in a certain slot of the equipment of the actor at a certain index in the read actor list.

	Parameters

	
	index – The index of the actor.

	slot – The slot of the equipment item.

	Returns

	The enchantment charge.

	
static bool DoesActorHavePlayerKiller(unsigned int index) noexcept

	Check whether the killer of the actor at a certain index in the read actor list is a player.

	Parameters

	index – The index of the actor.

	Returns

	Whether the actor was killed by a player.

	
static int GetActorKillerPid(unsigned int index) noexcept

	Get the player ID of the killer of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The player ID of the killer.

	
static const char *GetActorKillerRefId(unsigned int index) noexcept

	Get the refId of the actor killer of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The refId of the killer.

	
static unsigned int GetActorKillerRefNum(unsigned int index) noexcept

	Get the refNum of the actor killer of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The refNum of the killer.

	
static unsigned int GetActorKillerMpNum(unsigned int index) noexcept

	Get the mpNum of the actor killer of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The mpNum of the killer.

	
static const char *GetActorKillerName(unsigned int index) noexcept

	Get the name of the actor killer of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The name of the killer.

	
static unsigned int GetActorDeathState(unsigned int index) noexcept

	Get the deathState of the actor at a certain index in the read actor list.

	Parameters

	index – The index of the actor.

	Returns

	The deathState.

	
static unsigned int GetActorSpellsActiveChangesSize(unsigned int actorIndex) noexcept

	Get the number of indexes in an actor’s latest spells active changes.

	Parameters

	actorIndex – The index of the actor.

	Returns

	The number of indexes for spells active changes.

	
static unsigned int GetActorSpellsActiveChangesAction(unsigned int actorIndex) noexcept

	Get the action type used in an actor’s latest spells active changes.

	Parameters

	actorIndex – The index of the actor.

	Returns

	The action type (0 for SET, 1 for ADD, 2 for REMOVE).

	
static const char *GetActorSpellsActiveId(unsigned int actorIndex, unsigned int spellIndex) noexcept

	Get the spell id at a certain index in an actor’s latest spells active changes.

	Parameters

	
	actorIndex – The index of the actor.

	spellIndex – The index of the spell.

	Returns

	The spell id.

	
static const char *GetActorSpellsActiveDisplayName(unsigned int actorIndex, unsigned int spellIndex) noexcept

	Get the spell display name at a certain index in an actor’s latest spells active changes.

	Parameters

	
	actorIndex – The index of the actor.

	spellIndex – The index of the spell.

	Returns

	The spell display name.

	
static bool GetActorSpellsActiveStackingState(unsigned int actorIndex, unsigned int spellIndex) noexcept

	Get the spell stacking state at a certain index in an actor’s latest spells active changes.

	Parameters

	
	actorIndex – The index of the actor.

	spellIndex – The index of the spell.

	Returns

	The spell stacking state.

	
static unsigned int GetActorSpellsActiveEffectCount(unsigned int actorIndex, unsigned int spellIndex) noexcept

	Get the number of effects at an index in an actor’s latest spells active changes.

	Parameters

	
	actorIndex – The index of the actor.

	spellIndex – The index of the spell.

	Returns

	The number of effects.

	
static unsigned int GetActorSpellsActiveEffectId(unsigned int actorIndex, unsigned int spellIndex, unsigned int effectIndex) noexcept

	Get the id for an effect index at a spell index in an actor’s latest spells active changes.

	Parameters

	
	actorIndex – The index of the actor.

	spellIndex – The index of the spell.

	effectIndex – The index of the effect.

	Returns

	The id of the effect.

	
static int GetActorSpellsActiveEffectArg(unsigned int actorIndex, unsigned int spellIndex, unsigned int effectIndex) noexcept

	Get the arg for an effect index at a spell index in an actor’s latest spells active changes.

	Parameters

	
	actorIndex – The index of the actor.

	spellIndex – The index of the spell.

	effectIndex – The index of the effect.

	Returns

	The arg of the effect.

	
static double GetActorSpellsActiveEffectMagnitude(unsigned int actorIndex, unsigned int spellIndex, unsigned int effectIndex) noexcept

	Get the magnitude for an effect index at a spell index in an actor’s latest spells active changes.

	Parameters

	
	actorIndex – The index of the actor.

	spellIndex – The index of the spell.

	effectIndex – The index of the effect.

	Returns

	The magnitude of the effect.

	
static double GetActorSpellsActiveEffectDuration(unsigned int actorIndex, unsigned int spellIndex, unsigned int effectIndex) noexcept

	Get the duration for an effect index at a spell index in an actor’s latest spells active changes.

	Parameters

	
	actorIndex – The index of the actor.

	spellIndex – The index of the spell.

	effectIndex – The index of the effect.

	Returns

	The duration of the effect.

	
static double GetActorSpellsActiveEffectTimeLeft(unsigned int actorIndex, unsigned int spellIndex, unsigned int effectIndex) noexcept

	Get the time left for an effect index at a spell index in an actor’s latest spells active changes.

	Parameters

	
	actorIndex – The index of the actor.

	spellIndex – The index of the spell.

	effectIndex – The index of the effect.

	Returns

	The time left for the effect.

	
static bool DoesActorSpellsActiveHavePlayerCaster(unsigned int actorIndex, unsigned int spellIndex) noexcept

	Check whether the spell at a certain index in an actor’s latest spells active changes has a player as its caster.

	Parameters

	
	actorIndex – The index of the actor.

	spellIndex – The index of the spell.

	Returns

	Whether a player is the caster of the spell.

	
static int GetActorSpellsActiveCasterPid(unsigned int actorIndex, unsigned int spellIndex) noexcept

	Get the player ID of the caster of the spell at a certain index in an actor’s latest spells active changes.

	Parameters

	
	actorIndex – The index of the actor.

	spellIndex – The index of the spell.

	Returns

	The player ID of the caster.

	
static const char *GetActorSpellsActiveCasterRefId(unsigned int actorIndex, unsigned int spellIndex) noexcept

	Get the refId of the actor caster of the spell at a certain index in an actor’s latest spells active changes.

	Parameters

	
	actorIndex – The index of the actor.

	spellIndex – The index of the spell.

	Returns

	The refId of the caster.

	
static unsigned int GetActorSpellsActiveCasterRefNum(unsigned int actorIndex, unsigned int spellIndex) noexcept

	Get the refNum of the actor caster of the spell at a certain index in an actor’s latest spells active changes.

	Parameters

	
	actorIndex – The index of the actor.

	spellIndex – The index of the spell.

	Returns

	The refNum of the caster.

	
static unsigned int GetActorSpellsActiveCasterMpNum(unsigned int actorIndex, unsigned int spellIndex) noexcept

	Get the mpNum of the actor caster of the spell at a certain index in an actor’s latest spells active changes.

	Parameters

	
	actorIndex – The index of the actor.

	spellIndex – The index of the spell.

	Returns

	The mpNum of the caster.

	
static bool DoesActorHavePosition(unsigned int index) noexcept

	Check whether there is any positional data for the actor at a certain index in the read actor list.

This is only useful when reading the actor list data recorded for a particular cell.

	Parameters

	index – The index of the actor.

	Returns

	Whether the read actor list contains positional data.

	
static bool DoesActorHaveStatsDynamic(unsigned int index) noexcept

	Check whether there is any dynamic stats data for the actor at a certain index in the read actor list.

This is only useful when reading the actor list data recorded for a particular cell.

	Parameters

	index – The index of the actor.

	Returns

	Whether the read actor list contains dynamic stats data.

	
static void SetActorListCell(const char *cellDescription) noexcept

	Set the cell of the temporary actor list stored on the server.

The cell is determined to be an exterior cell if it fits the pattern of a number followed by a comma followed by another number.

	Parameters

	cellDescription – The description of the cell.

	Returns

	void

	
static void SetActorListAction(unsigned char action) noexcept

	Set the action type of the temporary actor list stored on the server.

	Parameters

	action – The action type (0 for SET, 1 for ADD, 2 for REMOVE, 3 for REQUEST).

	Returns

	void

	
static void SetActorCell(const char *cellDescription) noexcept

	Set the cell of the temporary actor stored on the server.

Used for ActorCellChange packets, where a specific actor’s cell now differs from that of the actor list.

The cell is determined to be an exterior cell if it fits the pattern of a number followed by a comma followed by another number.

	Parameters

	cellDescription – The description of the cell.

	Returns

	void

	
static void SetActorRefId(const char *refId) noexcept

	Set the refId of the temporary actor stored on the server.

	Parameters

	refId – The refId.

	Returns

	void

	
static void SetActorRefNum(int refNum) noexcept

	Set the refNum of the temporary actor stored on the server.

	Parameters

	refNum – The refNum.

	Returns

	void

	
static void SetActorMpNum(int mpNum) noexcept

	Set the mpNum of the temporary actor stored on the server.

	Parameters

	mpNum – The mpNum.

	Returns

	void

	
static void SetActorPosition(double x, double y, double z) noexcept

	Set the position of the temporary actor stored on the server.

	Parameters

	
	x – The X position.

	y – The Y position.

	z – The Z position.

	Returns

	void

	
static void SetActorRotation(double x, double y, double z) noexcept

	Set the rotation of the temporary actor stored on the server.

	Parameters

	
	x – The X rotation.

	y – The Y rotation.

	z – The Z rotation.

	Returns

	void

	
static void SetActorHealthBase(double value) noexcept

	Set the base health of the temporary actor stored on the server.

	Parameters

	value – The new value.

	Returns

	void

	
static void SetActorHealthCurrent(double value) noexcept

	Set the current health of the temporary actor stored on the server.

	Parameters

	value – The new value.

	Returns

	void

	
static void SetActorHealthModified(double value) noexcept

	Set the modified health of the temporary actor stored on the server.

	Parameters

	value – The new value.

	Returns

	void

	
static void SetActorMagickaBase(double value) noexcept

	Set the base magicka of the temporary actor stored on the server.

	Parameters

	value – The new value.

	Returns

	void

	
static void SetActorMagickaCurrent(double value) noexcept

	Set the current magicka of the temporary actor stored on the server.

	Parameters

	value – The new value.

	Returns

	void

	
static void SetActorMagickaModified(double value) noexcept

	Set the modified magicka of the temporary actor stored on the server.

	Parameters

	value – The new value.

	Returns

	void

	
static void SetActorFatigueBase(double value) noexcept

	Set the base fatigue of the temporary actor stored on the server.

	Parameters

	value – The new value.

	Returns

	void

	
static void SetActorFatigueCurrent(double value) noexcept

	Set the current fatigue of the temporary actor stored on the server.

	Parameters

	value – The new value.

	Returns

	void

	
static void SetActorFatigueModified(double value) noexcept

	Set the modified fatigue of the temporary actor stored on the server.

	Parameters

	value – The new value.

	Returns

	void

	
static void SetActorSound(const char *sound) noexcept

	Set the sound of the temporary actor stored on the server.

	Parameters

	sound – The sound.

	Returns

	void

	
static void SetActorDeathState(unsigned int deathState) noexcept

	Set the deathState of the temporary actor stored on the server.

	Parameters

	deathState – The deathState.

	Returns

	void

	
static void SetActorDeathInstant(bool isInstant) noexcept

	Set whether the death of the temporary actor stored on the server should be instant or not.

	Parameters

	isInstant – Whether the death should be instant.

	Returns

	void

	
static void SetActorSpellsActiveAction(unsigned char action) noexcept

	Set the action type in the spells active changes of the temporary actor stored on the server.

	Parameters

	action – The action (0 for SET, 1 for ADD, 2 for REMOVE).

	Returns

	void

	
static void SetActorAIAction(unsigned int action) noexcept

	Set the AI action of the temporary actor stored on the server.

	Parameters

	action – The new action.

	Returns

	void

	
static void SetActorAITargetToPlayer(unsigned short pid) noexcept

	Set a player as the AI target of the temporary actor stored on the server.

	Parameters

	pid – The player ID.

	Returns

	void

	
static void SetActorAITargetToObject(int refNum, int mpNum) noexcept

	Set another object as the AI target of the temporary actor stored on the server.

	Parameters

	
	refNum – The refNum of the target object.

	mpNum – The mpNum of the target object.

	Returns

	void

	
static void SetActorAICoordinates(double x, double y, double z) noexcept

	Set the coordinates for the AI package associated with the current AI action.

	Parameters

	
	x – The X coordinate.

	y – The Y coordinate.

	z – The Z coordinate.

	Returns

	void

	
static void SetActorAIDistance(unsigned int distance) noexcept

	Set the distance of the AI package associated with the current AI action.

	Parameters

	distance – The distance of the package.

	Returns

	void

	
static void SetActorAIDuration(unsigned int duration) noexcept

	Set the duration of the AI package associated with the current AI action.

	Parameters

	duration – The duration of the package.

	Returns

	void

	
static void SetActorAIRepetition(bool shouldRepeat) noexcept

	Set whether the current AI package should be repeated.

Note: This only has an effect on the WANDER package.

	Parameters

	shouldRepeat – Whether the package should be repeated.

	Returns

	void

	
static void EquipActorItem(unsigned short slot, const char *refId, unsigned int count, int charge, double enchantmentCharge = -1) noexcept

	Equip an item in a certain slot of the equipment of the temporary actor stored on the server.

	Parameters

	
	slot – The equipment slot.

	refId – The refId of the item.

	count – The count of the item.

	charge – The charge of the item.

	enchantmentCharge – The enchantment charge of the item.

	Returns

	void

	
static void UnequipActorItem(unsigned short slot) noexcept

	Unequip the item in a certain slot of the equipment of the temporary actor stored on the server.

	Parameters

	slot – The equipment slot.

	Returns

	void

	
static void AddActorSpellActive(const char *spellId, const char *displayName, bool stackingState) noexcept

	Add a new active spell to the spells active changes for the temporary actor stored, on the server, using the temporary effect values stored so far.

	Parameters

	
	spellId – The spellId of the spell.

	displayName – The displayName of the spell.

	stackingState – Whether the spell should stack with other instances of itself.

	Returns

	void

	
static void AddActorSpellActiveEffect(int effectId, double magnitude, double duration, double timeLeft, int arg) noexcept

	Add a new effect to the next active spell that will be added to the temporary actor stored on the server.

	Parameters

	
	effectId – The id of the effect.

	magnitude – The magnitude of the effect.

	duration – The duration of the effect.

	timeLeft – The timeLeft for the effect.

	arg – The arg of the effect when applicable, e.g. the skill used for Fortify Skill or the attribute used for Fortify Attribute.

	Returns

	void

	
static void AddActor() noexcept

	Add a copy of the server’s temporary actor to the server’s temporary actor list.

In the process, the server’s temporary actor will automatically be cleared so a new one can be set up.

	Returns

	void

	
static void SendActorList() noexcept

	Send an ActorList packet.

It is sent only to the player for whom the current actor list was initialized.

	Returns

	void

	
static void SendActorAuthority() noexcept

	Send an ActorAuthority packet.

The player for whom the current actor list was initialized is recorded in the server memory as the new actor authority for the actor list’s cell.

The packet is sent to that player as well as all other players who have the cell loaded.

	Returns

	void

	
static void SendActorPosition(bool sendToOtherVisitors, bool skipAttachedPlayer) noexcept

	Send an ActorPosition packet.

	Parameters

	
	sendToOtherVisitors – Whether this packet should be sent to cell visitors other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendActorStatsDynamic(bool sendToOtherVisitors, bool skipAttachedPlayer) noexcept

	Send an ActorStatsDynamic packet.

	Parameters

	
	sendToOtherVisitors – Whether this packet should be sent to cell visitors other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendActorEquipment(bool sendToOtherVisitors, bool skipAttachedPlayer) noexcept

	Send an ActorEquipment packet.

	Parameters

	
	sendToOtherVisitors – Whether this packet should be sent to cell visitors other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendActorSpellsActiveChanges(bool sendToOtherVisitors, bool skipAttachedPlayer) noexcept

	Send an ActorSpellsActive packet.

	Parameters

	
	sendToOtherVisitors – Whether this packet should be sent to cell visitors other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendActorSpeech(bool sendToOtherVisitors, bool skipAttachedPlayer) noexcept

	Send an ActorSpeech packet.

	Parameters

	
	sendToOtherVisitors – Whether this packet should be sent to cell visitors other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendActorDeath(bool sendToOtherVisitors, bool skipAttachedPlayer) noexcept

	Send an ActorDeath packet.

	Parameters

	
	sendToOtherVisitors – Whether this packet should be sent to cell visitors other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendActorAI(bool sendToOtherVisitors, bool skipAttachedPlayer) noexcept

	Send an ActorAI packet.

	Parameters

	
	sendToOtherVisitors – Whether this packet should be sent to cell visitors other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendActorCellChange(bool sendToOtherVisitors, bool skipAttachedPlayer) noexcept

	Send an ActorCellChange packet.

	Parameters

	
	sendToOtherVisitors – Whether this packet should be sent to cell visitors other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

Book functions

	
class BookFunctions

	
Public Static Functions

	
static void ClearBookChanges(unsigned short pid) noexcept

	Clear the last recorded book changes for a player.

This is used to initialize the sending of new PlayerBook packets.

	Parameters

	pid – The player ID whose book changes should be used.

	Returns

	void

	
static unsigned int GetBookChangesSize(unsigned short pid) noexcept

	Get the number of indexes in a player’s latest book changes.

	Parameters

	pid – The player ID whose book changes should be used.

	Returns

	The number of indexes.

	
static void AddBook(unsigned short pid, const char *bookId) noexcept

	Add a new book to the book changes for a player.

	Parameters

	
	pid – The player ID whose book changes should be used.

	bookId – The bookId of the book.

	Returns

	void

	
static const char *GetBookId(unsigned short pid, unsigned int index) noexcept

	Get the bookId at a certain index in a player’s latest book changes.

	Parameters

	
	pid – The player ID whose book changes should be used.

	index – The index of the book.

	Returns

	The bookId.

	
static void SendBookChanges(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a PlayerBook packet with a player’s recorded book changes.

	Parameters

	
	pid – The player ID whose book changes should be used.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

Cell functions

	
class CellFunctions

	
Public Static Functions

	
static unsigned int GetCellStateChangesSize(unsigned short pid) noexcept

	Get the number of indexes in a player’s latest cell state changes.

	Parameters

	pid – The player ID whose cell state changes should be used.

	Returns

	The number of indexes.

	
static unsigned int GetCellStateType(unsigned short pid, unsigned int index) noexcept

	Get the cell state type at a certain index in a player’s latest cell state changes.

	Parameters

	
	pid – The player ID whose cell state changes should be used.

	index – The index of the cell state.

	Returns

	The cell state type (0 for LOAD, 1 for UNLOAD).

	
static const char *GetCellStateDescription(unsigned short pid, unsigned int index) noexcept

	Get the cell description at a certain index in a player’s latest cell state changes.

	Parameters

	
	pid – The player ID whose cell state changes should be used.

	index – The index of the cell state.

	Returns

	The cell description.

	
static const char *GetCell(unsigned short pid) noexcept

	Get the cell description of a player’s cell.

	Parameters

	pid – The player ID.

	Returns

	The cell description.

	
static int GetExteriorX(unsigned short pid) noexcept

	Get the X coordinate of the player’s exterior cell.

	Parameters

	pid – The player ID.

	Returns

	The X coordinate of the cell.

	
static int GetExteriorY(unsigned short pid) noexcept

	Get the Y coordinate of the player’s exterior cell.

	Parameters

	pid – The player ID.

	Returns

	The Y coordinate of the cell.

	
static bool IsInExterior(unsigned short pid) noexcept

	Check whether the player is in an exterior cell or not.

	Parameters

	pid – The player ID.

	Returns

	Whether the player is in an exterior cell.

	
static const char *GetRegion(unsigned short pid) noexcept

	Get the region of the player’s exterior cell.

A blank value will be returned if the player is in an interior.

	Parameters

	pid – The player ID.

	Returns

	The region.

	
static bool IsChangingRegion(unsigned short pid) noexcept

	Check whether the player’s last cell change has involved a region change.

	Parameters

	pid – The player ID.

	Returns

	Whether the player has changed their region.

	
static void SetCell(unsigned short pid, const char *cellDescription) noexcept

	Set the cell of a player.

This changes the cell recorded for that player in the server memory, but does not by itself send a packet.

The cell is determined to be an exterior cell if it fits the pattern of a number followed by a comma followed by another number.

	Parameters

	
	pid – The player ID.

	cellDescription – The cell description.

	Returns

	void

	
static void SetExteriorCell(unsigned short pid, int x, int y) noexcept

	Set the cell of a player to an exterior cell.

This changes the cell recorded for that player in the server memory, but does not by itself send a packet.

	Parameters

	
	pid – The player ID.

	x – The X coordinate of the cell.

	y – The Y coordinate of the cell.

	Returns

	void

	
static void SendCell(unsigned short pid) noexcept

	Send a PlayerCellChange packet about a player.

It is only sent to the affected player.

	Parameters

	pid – The player ID.

	Returns

	void

Char class functions

	
class CharClassFunctions

	
Public Static Functions

	
static const char *GetDefaultClass(unsigned short pid) noexcept

	Get the default class used by a player.

	Parameters

	pid – The player ID.

	Returns

	The ID of the default class.

	
static const char *GetClassName(unsigned short pid) noexcept

	Get the name of the custom class used by a player.

	Parameters

	pid – The player ID.

	Returns

	The name of the custom class.

	
static const char *GetClassDesc(unsigned short pid) noexcept

	Get the description of the custom class used by a player.

	Parameters

	pid – The player ID.

	Returns

	The description of the custom class.

	
static int GetClassMajorAttribute(unsigned short pid, unsigned char slot)

	Get the ID of one of the two major attributes of a custom class used by a player.

	Parameters

	
	pid – The player ID.

	slot – The slot of the major attribute (0 or 1).

	Returns

	The ID of the major attribute.

	
static int GetClassSpecialization(unsigned short pid) noexcept

	Get the specialization ID of the custom class used by a player.

	Parameters

	pid – The player ID.

	Returns

	The specialization ID of the custom class (0 for Combat, 1 for Magic, 2 for Stealth).

	
static int GetClassMajorSkill(unsigned short pid, unsigned char slot)

	Get the ID of one of the five major skills of a custom class used by a player.

	Parameters

	
	pid – The player ID.

	slot – The slot of the major skill (0 to 4).

	Returns

	The ID of the major skill.

	
static int GetClassMinorSkill(unsigned short pid, unsigned char slot)

	Get the ID of one of the five minor skills of a custom class used by a player.

	Parameters

	
	pid – The player ID.

	slot – The slot of the minor skill (0 to 4).

	Returns

	The ID of the minor skill.

	
static int IsClassDefault(unsigned short pid) noexcept

	Check whether the player is using a default class instead of a custom one.

	Parameters

	pid – The player ID.

	Returns

	Whether the player is using a default class.

	
static void SetDefaultClass(unsigned short pid, const char *id) noexcept

	Set the default class used by a player.

If this is left blank, the custom class data set for the player will be used instead.

	Parameters

	
	pid – The player ID.

	id – The ID of the default class.

	Returns

	void

	
static void SetClassName(unsigned short pid, const char *name) noexcept

	Set the name of the custom class used by a player.

	Parameters

	
	pid – The player ID.

	name – The name of the custom class.

	Returns

	void

	
static void SetClassDesc(unsigned short pid, const char *desc) noexcept

	Set the description of the custom class used by a player.

	Parameters

	
	pid – The player ID.

	desc – The description of the custom class.

	Returns

	void

	
static void SetClassMajorAttribute(unsigned short pid, unsigned char slot, int attrId)

	Set the ID of one of the two major attributes of the custom class used by a player.

	Parameters

	
	pid – The player ID.

	slot – The slot of the major attribute (0 or 1).

	attrId – The ID to use for the attribute.

	Returns

	void

	
static void SetClassSpecialization(unsigned short pid, int spec) noexcept

	Set the specialization of the custom class used by a player.

	Parameters

	
	pid – The player ID.

	spec – The specialization ID to use (0 for Combat, 1 for Magic, 2 for Stealth).

	Returns

	void

	
static void SetClassMajorSkill(unsigned short pid, unsigned char slot, int skillId)

	Set the ID of one of the five major skills of the custom class used by a player.

	Parameters

	
	pid – The player ID.

	slot – The slot of the major skill (0 to 4).

	skillId – The ID to use for the skill.

	Returns

	void

	
static void SetClassMinorSkill(unsigned short pid, unsigned char slot, int skillId)

	Set the ID of one of the five minor skills of the custom class used by a player.

	Parameters

	
	pid – The player ID.

	slot – The slot of the minor skill (0 to 4).

	skillId – The ID to use for the skill.

	Returns

	void

	
static void SendClass(unsigned short pid) noexcept

	Send a PlayerCharClass packet about a player.

It is only sent to the affected player.

	Parameters

	pid – The player ID.

	Returns

	void

Chat functions

	
class ChatFunctions

	
Public Static Functions

	
static void SendMessage(unsigned short pid, const char *message, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a message to a certain player.

	Parameters

	
	pid – The player ID.

	message – The contents of the message.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void CleanChatForPid(unsigned short pid)

	Remove all messages from chat for a certain player.

	Parameters

	pid – The player ID.

	Returns

	void

	
static void CleanChat()

	Remove all messages from chat for everyone on the server.

	Returns

	void

Dialogue functions

	
class DialogueFunctions

	
Public Static Functions

	
static void ClearTopicChanges(unsigned short pid) noexcept

	Clear the last recorded topic changes for a player.

This is used to initialize the sending of new PlayerTopic packets.

	Parameters

	pid – The player ID whose topic changes should be used.

	Returns

	void

	
static unsigned int GetTopicChangesSize(unsigned short pid) noexcept

	Get the number of indexes in a player’s latest topic changes.

	Parameters

	pid – The player ID whose topic changes should be used.

	Returns

	The number of indexes.

	
static void AddTopic(unsigned short pid, const char *topicId) noexcept

	Add a new topic to the topic changes for a player.

	Parameters

	
	pid – The player ID whose topic changes should be used.

	topicId – The topicId of the topic.

	Returns

	void

	
static const char *GetTopicId(unsigned short pid, unsigned int index) noexcept

	Get the topicId at a certain index in a player’s latest topic changes.

	Parameters

	
	pid – The player ID whose topic changes should be used.

	index – The index of the topic.

	Returns

	The topicId.

	
static void SendTopicChanges(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a PlayerTopic packet with a player’s recorded topic changes.

	Parameters

	
	pid – The player ID whose topic changes should be used.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void PlayAnimation(unsigned short pid, const char *groupname, int mode, int count, bool persist) noexcept

	Play a certain animation on a player’s character by sending a PlayerAnimation packet.

	Parameters

	
	pid – The player ID of the character playing the animation.

	groupname – The groupname of the animation.

	mode – The mode of the animation.

	count – The number of times the animation should be played.

	persist – Whether the animation should persist or not.

	Returns

	void

	
static void PlaySpeech(unsigned short pid, const char *sound) noexcept

	Play a certain sound for a player as spoken by their character by sending a PlayerSpeech packet.

	Parameters

	
	pid – The player ID of the character playing the sound.

	sound – The path of the sound file.

	Returns

	void

Faction functions

	
class FactionFunctions

	
Public Static Functions

	
static void ClearFactionChanges(unsigned short pid) noexcept

	Clear the last recorded faction changes for a player.

This is used to initialize the sending of new PlayerFaction packets.

	Parameters

	pid – The player ID whose faction changes should be used.

	Returns

	void

	
static unsigned int GetFactionChangesSize(unsigned short pid) noexcept

	Get the number of indexes in a player’s latest faction changes.

	Parameters

	pid – The player ID whose faction changes should be used.

	Returns

	The number of indexes.

	
static unsigned char GetFactionChangesAction(unsigned short pid) noexcept

	Get the action type used in a player’s latest faction changes.

	Parameters

	pid – The player ID whose faction changes should be used.

	Returns

	The action type (0 for RANK, 1 for EXPULSION, 2 for REPUTATION).

	
static const char *GetFactionId(unsigned short pid, unsigned int index) noexcept

	Get the factionId at a certain index in a player’s latest faction changes.

	Parameters

	
	pid – The player ID whose faction changes should be used.

	index – The index of the faction.

	Returns

	The factionId.

	
static int GetFactionRank(unsigned short pid, unsigned int index) noexcept

	Get the rank at a certain index in a player’s latest faction changes.

	Parameters

	
	pid – The player ID whose faction changes should be used.

	index – The index of the faction.

	Returns

	The rank.

	
static bool GetFactionExpulsionState(unsigned short pid, unsigned int index) noexcept

	Get the expulsion state at a certain index in a player’s latest faction changes.

	Parameters

	
	pid – The player ID whose faction changes should be used.

	index – The index of the faction.

	Returns

	The expulsion state.

	
static int GetFactionReputation(unsigned short pid, unsigned int index) noexcept

	Get the reputation at a certain index in a player’s latest faction changes.

	Parameters

	
	pid – The player ID whose faction changes should be used.

	index – The index of the faction.

	Returns

	The reputation.

	
static void SetFactionChangesAction(unsigned short pid, unsigned char action) noexcept

	Set the action type in a player’s faction changes.

	Parameters

	
	pid – The player ID whose faction changes should be used.

	action – The action (0 for RANK, 1 for EXPULSION, 2 for REPUTATION).

	Returns

	void

	
static void SetFactionId(const char *factionId) noexcept

	Set the factionId of the temporary faction stored on the server.

	Parameters

	factionId – The factionId.

	Returns

	void

	
static void SetFactionRank(unsigned int rank) noexcept

	Set the rank of the temporary faction stored on the server.

	Parameters

	rank – The rank.

	Returns

	void

	
static void SetFactionExpulsionState(bool expulsionState) noexcept

	Set the expulsion state of the temporary faction stored on the server.

	Parameters

	expulsionState – The expulsion state.

	Returns

	void

	
static void SetFactionReputation(int reputation) noexcept

	Set the reputation of the temporary faction stored on the server.

	Parameters

	reputation – The reputation.

	Returns

	void

	
static void AddFaction(unsigned short pid) noexcept

	Add the server’s temporary faction to the faction changes for a player.

In the process, the server’s temporary faction will automatically be cleared so a new one can be set up.

	Parameters

	pid – The player ID whose faction changes should be used.

	Returns

	void

	
static void SendFactionChanges(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a PlayerFaction packet with a player’s recorded faction changes.

	Parameters

	
	pid – The player ID whose faction changes should be used.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

GUI functions

	
class GUIFunctions

	
Public Static Functions

	
static void _MessageBox(unsigned short pid, int id, const char *label) noexcept

	Display a simple messagebox at the bottom of the screen that vanishes after a few seconds.

Note for C++ programmers: do not rename into MessageBox so as to not conflict with WINAPI’s MessageBox.

	Parameters

	
	pid – The player ID for whom the messagebox should appear.

	id – The numerical ID of the messagebox.

	label – The text in the messagebox.

	Returns

	void

	
static void CustomMessageBox(unsigned short pid, int id, const char *label, const char *buttons) noexcept

	Display an interactive messagebox at the center of the screen that vanishes only when one of its buttons is clicked.

	Parameters

	
	pid – The player ID for whom the messagebox should appear.

	id – The numerical ID of the messagebox.

	label – The text in the messagebox. \parm buttons The captions of the buttons, separated by semicolons (e.g. “Yes;No;Maybe”).

	Returns

	void

	
static void InputDialog(unsigned short pid, int id, const char *label, const char *note) noexcept

	Display an input dialog at the center of the screen.

	Parameters

	
	pid – The player ID for whom the input dialog should appear.

	id – The numerical ID of the input dialog.

	label – The text at the top of the input dialog. \parm note The text at the bottom of the input dialog.

	Returns

	void

	
static void PasswordDialog(unsigned short pid, int id, const char *label, const char *note) noexcept

	Display a password dialog at the center of the screen.

Although similar to an input dialog, the password dialog replaces all input characters with asterisks.

	Parameters

	
	pid – The player ID for whom the password dialog should appear.

	id – The numerical ID of the password dialog.

	label – The text at the top of the password dialog. \parm note The text at the bottom of the password dialog.

	Returns

	void

	
static void ListBox(unsigned short pid, int id, const char *label, const char *items)

	Display a listbox at the center of the screen where each item takes up a row and is selectable, with the listbox only vanishing once the Ok button is pressed.

	Parameters

	
	pid – The player ID for whom the listbox should appear.

	id – The numerical ID of the listbox.

	label – The text at the top of the listbox. \parm items The items in the listbox, separated by newlines (e.g. “Item 1\nItem 2”).

	Returns

	void

	
static void ClearQuickKeyChanges(unsigned short pid) noexcept

	Clear the last recorded quick key changes for a player.

This is used to initialize the sending of new PlayerQuickKeys packets.

	Parameters

	pid – The player ID whose quick key changes should be used.

	Returns

	void

	
static unsigned int GetQuickKeyChangesSize(unsigned short pid) noexcept

	Get the number of indexes in a player’s latest quick key changes.

	Parameters

	pid – The player ID whose quick key changes should be used.

	Returns

	The number of indexes.

	
static void AddQuickKey(unsigned short pid, unsigned short slot, int type, const char *itemId = "") noexcept

	Add a new quick key to the quick key changes for a player.

	Parameters

	
	pid – The player ID whose quick key changes should be used.

	slot – The slot to be used.

	type – The type of the quick key (0 for ITEM, 1 for ITEM_MAGIC, 2 for MAGIC, 3 for UNASSIGNED).

	itemId – The itemId of the item.

	Returns

	void

	
static int GetQuickKeySlot(unsigned short pid, unsigned int index) noexcept

	Get the slot of the quick key at a certain index in a player’s latest quick key changes.

	Parameters

	
	pid – The player ID whose quick key changes should be used.

	index – The index of the quick key in the quick key changes vector.

	Returns

	The slot.

	
static int GetQuickKeyType(unsigned short pid, unsigned int index) noexcept

	Get the type of the quick key at a certain index in a player’s latest quick key changes.

	Parameters

	
	pid – The player ID whose quick key changes should be used.

	index – The index of the quick key in the quick key changes vector.

	Returns

	The quick key type.

	
static const char *GetQuickKeyItemId(unsigned short pid, unsigned int index) noexcept

	Get the itemId at a certain index in a player’s latest quick key changes.

	Parameters

	
	pid – The player ID whose quick key changes should be used.

	index – The index of the quick key in the quick key changes vector.

	Returns

	The itemId.

	
static void SendQuickKeyChanges(unsigned short pid) noexcept

	Send a PlayerQuickKeys packet with a player’s recorded quick key changes.

	Parameters

	pid – The player ID whose quick key changes should be used.

	Returns

	void

	
static void SetMapVisibility(unsigned short targetPid, unsigned short affectedPid, unsigned short state) noexcept

	Determine whether a player can see the map marker of another player.

Note: This currently has no effect, and is just an unimplemented stub.

	Parameters

	
	targetPid – The player ID whose map marker should be hidden or revealed.

	affectedPid – The player ID for whom the map marker will be hidden or revealed.

	state – The state of the map marker (false to hide, true to reveal).

	Returns

	void

	
static void SetMapVisibilityAll(unsigned short targetPid, unsigned short state) noexcept

	Determine whether a player’s map marker can be seen by all other players.

Note: This currently has no effect, and is just an unimplemented stub.

	Parameters

	
	targetPid – The player ID whose map marker should be hidden or revealed.

	state – The state of the map marker (false to hide, true to reveal).

	Returns

	void

Item functions

	
class ItemFunctions

	
Public Static Functions

	
static void ClearInventoryChanges(unsigned short pid) noexcept

	Clear the last recorded inventory changes for a player.

This is used to initialize the sending of new PlayerInventory packets.

	Parameters

	pid – The player ID whose inventory changes should be used.

	Returns

	void

	
static int GetEquipmentSize() noexcept

	Get the number of slots used for equipment.

The number is 19 before any dehardcoding is done in OpenMW.

	Returns

	The number of slots.

	
static unsigned int GetEquipmentChangesSize(unsigned short pid) noexcept

	Get the number of indexes in a player’s latest equipment changes.

	Parameters

	pid – The player ID whose equipment changes should be used.

	Returns

	The number of indexes.

	
static unsigned int GetInventoryChangesSize(unsigned short pid) noexcept

	Get the number of indexes in a player’s latest inventory changes.

	Parameters

	pid – The player ID whose inventory changes should be used.

	Returns

	The number of indexes.

	
static unsigned int GetInventoryChangesAction(unsigned short pid) noexcept

	Get the action type used in a player’s latest inventory changes.

	Parameters

	pid – The player ID whose inventory changes should be used.

	Returns

	The action type (0 for SET, 1 for ADD, 2 for REMOVE).

	
static void SetInventoryChangesAction(unsigned short pid, unsigned char action) noexcept

	Set the action type in a player’s inventory changes.

	Parameters

	
	pid – The player ID whose inventory changes should be used.

	action – The action (0 for SET, 1 for ADD, 2 for REMOVE).

	Returns

	void

	
static void EquipItem(unsigned short pid, unsigned short slot, const char *refId, unsigned int count, int charge, double enchantmentCharge = -1) noexcept

	Equip an item in a certain slot of the equipment of a player.

	Parameters

	
	pid – The player ID.

	slot – The equipment slot.

	refId – The refId of the item.

	count – The count of the item.

	charge – The charge of the item.

	enchantmentCharge – The enchantment charge of the item.

	Returns

	void

	
static void UnequipItem(unsigned short pid, unsigned short slot) noexcept

	Unequip the item in a certain slot of the equipment of a player.

	Parameters

	
	pid – The player ID.

	slot – The equipment slot.

	Returns

	void

	
static void AddItemChange(unsigned short pid, const char *refId, unsigned int count, int charge, double enchantmentCharge, const char *soul) noexcept

	Add an item change to a player’s inventory changes.

	Parameters

	
	pid – The player ID.

	refId – The refId of the item.

	count – The count of the item.

	charge – The charge of the item.

	enchantmentCharge – The enchantment charge of the item.

	soul – The soul of the item.

	Returns

	void

	
static bool HasItemEquipped(unsigned short pid, const char *refId)

	Check whether a player has equipped an item with a certain refId in any slot.

	Parameters

	
	pid – The player ID.

	refId – The refId of the item.

	Returns

	Whether the player has the item equipped.

	
static int GetEquipmentChangesSlot(unsigned short pid, unsigned int changeIndex) noexcept

	Get the slot used for the equipment item at a specific index in the most recent equipment changes.

	Parameters

	
	pid – The player ID.

	changeIndex – The index of the equipment change.

	Returns

	The slot.

	
static const char *GetEquipmentItemRefId(unsigned short pid, unsigned short slot) noexcept

	Get the refId of the item in a certain slot of the equipment of a player.

	Parameters

	
	pid – The player ID.

	slot – The slot of the equipment item.

	Returns

	The refId.

	
static int GetEquipmentItemCount(unsigned short pid, unsigned short slot) noexcept

	Get the count of the item in a certain slot of the equipment of a player.

	Parameters

	
	pid – The player ID.

	slot – The slot of the equipment item.

	Returns

	The item count.

	
static int GetEquipmentItemCharge(unsigned short pid, unsigned short slot) noexcept

	Get the charge of the item in a certain slot of the equipment of a player.

	Parameters

	
	pid – The player ID.

	slot – The slot of the equipment item.

	Returns

	The charge.

	
static double GetEquipmentItemEnchantmentCharge(unsigned short pid, unsigned short slot) noexcept

	Get the enchantment charge of the item in a certain slot of the equipment of a player.

	Parameters

	
	pid – The player ID.

	slot – The slot of the equipment item.

	Returns

	The enchantment charge.

	
static const char *GetInventoryItemRefId(unsigned short pid, unsigned int index) noexcept

	Get the refId of the item at a certain index in a player’s latest inventory changes.

	Parameters

	
	pid – The player ID whose inventory changes should be used.

	index – The index of the inventory item.

	Returns

	The refId.

	
static int GetInventoryItemCount(unsigned short pid, unsigned int index) noexcept

	Get the count of the item at a certain index in a player’s latest inventory changes.

	Parameters

	
	pid – The player ID whose inventory changes should be used.

	index – The index of the inventory item.

	Returns

	The item count.

	
static int GetInventoryItemCharge(unsigned short pid, unsigned int index) noexcept

	Get the charge of the item at a certain index in a player’s latest inventory changes.

	Parameters

	
	pid – The player ID whose inventory changes should be used.

	index – The index of the inventory item.

	Returns

	The charge.

	
static double GetInventoryItemEnchantmentCharge(unsigned short pid, unsigned int index) noexcept

	Get the enchantment charge of the item at a certain index in a player’s latest inventory changes.

	Parameters

	
	pid – The player ID whose inventory changes should be used.

	index – The index of the inventory item.

	Returns

	The enchantment charge.

	
static const char *GetInventoryItemSoul(unsigned short pid, unsigned int index) noexcept

	Get the soul of the item at a certain index in a player’s latest inventory changes.

	Parameters

	
	pid – The player ID whose inventory changes should be used.

	index – The index of the inventory item.

	Returns

	The soul.

	
static const char *GetUsedItemRefId(unsigned short pid) noexcept

	Get the refId of the item last used by a player.

	Parameters

	pid – The player ID.

	Returns

	The refId.

	
static int GetUsedItemCount(unsigned short pid) noexcept

	Get the count of the item last used by a player.

	Parameters

	pid – The player ID.

	Returns

	The item count.

	
static int GetUsedItemCharge(unsigned short pid) noexcept

	Get the charge of the item last used by a player.

	Parameters

	pid – The player ID.

	Returns

	The charge.

	
static double GetUsedItemEnchantmentCharge(unsigned short pid) noexcept

	Get the enchantment charge of the item last used by a player.

	Parameters

	pid – The player ID.

	Returns

	The enchantment charge.

	
static const char *GetUsedItemSoul(unsigned short pid) noexcept

	Get the soul of the item last used by a player.

	Parameters

	pid – The player ID.

	Returns

	The soul.

	
static void SendEquipment(unsigned short pid) noexcept

	Send a PlayerEquipment packet with a player’s equipment.

It is always sent to all players.

	Parameters

	pid – The player ID whose equipment should be sent.

	Returns

	void

	
static void SendInventoryChanges(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a PlayerInventory packet with a player’s recorded inventory changes.

	Parameters

	
	pid – The player ID whose inventory changes should be used.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendItemUse(unsigned short pid) noexcept

	Send a PlayerItemUse causing a player to use their recorded usedItem.

	Parameters

	pid – The player ID affected.

	Returns

	void

Mechanics functions

	
class MechanicsFunctions

	
Public Static Functions

	
static void ClearAlliedPlayersForPlayer(unsigned short pid) noexcept

	Clear the list of players who will be regarded as being player’s allies.

	Parameters

	pid – The player ID.

	Returns

	void

	
static unsigned char GetMiscellaneousChangeType(unsigned short pid) noexcept

	Get the type of a PlayerMiscellaneous packet.

	Parameters

	pid – The player ID.

	Returns

	The type.

	
static const char *GetMarkCell(unsigned short pid) noexcept

	Get the cell description of a player’s Mark cell.

	Parameters

	pid – The player ID.

	Returns

	The cell description.

	
static double GetMarkPosX(unsigned short pid) noexcept

	Get the X position of a player’s Mark.

	Parameters

	pid – The player ID.

	Returns

	The X position.

	
static double GetMarkPosY(unsigned short pid) noexcept

	Get the Y position of a player’s Mark.

	Parameters

	pid – The player ID.

	Returns

	The Y position.

	
static double GetMarkPosZ(unsigned short pid) noexcept

	Get the Z position of a player’s Mark.

	Parameters

	pid – The player ID.

	Returns

	The Z position.

	
static double GetMarkRotX(unsigned short pid) noexcept

	Get the X rotation of a player’s Mark.

	Parameters

	pid – The player ID.

	Returns

	The X rotation.

	
static double GetMarkRotZ(unsigned short pid) noexcept

	Get the Z rotation of a player’s Mark.

	Parameters

	pid – The player ID.

	Returns

	The X rotation.

	
static const char *GetSelectedSpellId(unsigned short pid) noexcept

	Get the ID of a player’s selected spell.

	Parameters

	pid – The player ID.

	Returns

	The spell ID.

	
static bool DoesPlayerHavePlayerKiller(unsigned short pid) noexcept

	Check whether the killer of a certain player is also a player.

	Parameters

	pid – The player ID of the killed player.

	Returns

	Whether the player was killed by another player.

	
static int GetPlayerKillerPid(unsigned short pid) noexcept

	Get the player ID of the killer of a certain player.

	Parameters

	pid – The player ID of the killed player.

	Returns

	The player ID of the killer.

	
static const char *GetPlayerKillerRefId(unsigned short pid) noexcept

	Get the refId of the actor killer of a certain player.

	Parameters

	pid – The player ID of the killed player.

	Returns

	The refId of the killer.

	
static unsigned int GetPlayerKillerRefNum(unsigned short pid) noexcept

	Get the refNum of the actor killer of a certain player.

	Parameters

	pid – The player ID of the killed player.

	Returns

	The refNum of the killer.

	
static unsigned int GetPlayerKillerMpNum(unsigned short pid) noexcept

	Get the mpNum of the actor killer of a certain player.

	Parameters

	pid – The player ID of the killed player.

	Returns

	The mpNum of the killer.

	
static const char *GetPlayerKillerName(unsigned short pid) noexcept

	Get the name of the actor killer of a certain player.

	Parameters

	pid – The player ID of the killed player.

	Returns

	The name of the killer.

	
static unsigned int GetDrawState(unsigned short pid) noexcept

	Get the draw state of a player (0 for nothing, 1 for drawn weapon, 2 for drawn spell).

	Parameters

	pid – The player ID.

	Returns

	The draw state.

	
static bool GetSneakState(unsigned short pid) noexcept

	Get the sneak state of a player.

	Parameters

	pid – The player ID.

	Returns

	Whether the player is sneaking.

	
static void SetMarkCell(unsigned short pid, const char *cellDescription) noexcept

	Set the Mark cell of a player.

This changes the Mark cell recorded for that player in the server memory, but does not by itself send a packet.

The cell is determined to be an exterior cell if it fits the pattern of a number followed by a comma followed by another number.

	Parameters

	
	pid – The player ID.

	cellDescription – The cell description.

	Returns

	void

	
static void SetMarkPos(unsigned short pid, double x, double y, double z) noexcept

	Set the Mark position of a player.

This changes the Mark positional coordinates recorded for that player in the server memory, but does not by itself send a packet.

	Parameters

	
	pid – The player ID.

	x – The X position.

	y – The Y position.

	z – The Z position.

	Returns

	void

	
static void SetMarkRot(unsigned short pid, double x, double z) noexcept

	Set the Mark rotation of a player.

This changes the Mark positional coordinates recorded for that player in the server memory, but does not by itself send a packet.

	Parameters

	
	pid – The player ID.

	x – The X rotation.

	z – The Z rotation.

	Returns

	void

	
static void SetSelectedSpellId(unsigned short pid, const char *spellId) noexcept

	Set the ID of a player’s selected spell.

This changes the spell ID recorded for that player in the server memory, but does not by itself send a packet.

	Parameters

	
	pid – The player ID.

	spellId – The spell ID.

	Returns

	void

	
static void AddAlliedPlayerForPlayer(unsigned short pid, unsigned short alliedPlayerPid) noexcept

	Add an ally to a player’s list of allied players.

	Parameters

	
	pid – The player ID.

	alliedPlayerPid – The ally’s player ID.

	Returns

	void

	
static void SendMarkLocation(unsigned short pid)

	Send a PlayerMiscellaneous packet with a Mark location to a player.

	Parameters

	pid – The player ID.

	Returns

	void

	
static void SendSelectedSpell(unsigned short pid)

	Send a PlayerMiscellaneous packet with a selected spell ID to a player.

	Parameters

	pid – The player ID.

	Returns

	void

	
static void SendAlliedPlayers(unsigned short pid, bool sendToOtherPlayers)

	Send a PlayerAlly packet with a list of team member IDs to a player.

	Parameters

	
	pid – The player ID.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	Returns

	void

	
static void Jail(unsigned short pid, int jailDays, bool ignoreJailTeleportation, bool ignoreJailSkillIncreases, const char *jailProgressText, const char *jailEndText) noexcept

	Send a PlayerJail packet about a player.

This is similar to the player being jailed by a guard, but provides extra parameters for increased flexibility.

It is only sent to the player being jailed, as the other players will be informed of the jailing’s actual consequences via other packets sent by the affected client.

	Parameters

	
	pid – The player ID.

	jailDays – The number of days to spend jailed, where each day affects one skill point.

	ignoreJailTeleportation – Whether the player being teleported to the nearest jail marker should be overridden.

	ignoreJailSkillIncreases – Whether the player’s Sneak and Security skills should be prevented from increasing as a result of the jailing, overriding default behavior.

	jailProgressText – The text that should be displayed while jailed.

	jailEndText – The text that should be displayed once the jailing period is over.

	Returns

	void

	
static void Resurrect(unsigned short pid, unsigned int type) noexcept

	Send a PlayerResurrect packet about a player.

This sends the packet to all players connected to the server.

	Parameters

	
	pid – The player ID.

	type – The type of resurrection (0 for REGULAR, 1 for IMPERIAL_SHRINE, 2 for TRIBUNAL_TEMPLE).

	Returns

	void

Miscellaneous functions

	
class MiscellaneousFunctions

	
Public Static Functions

	
static const char *GenerateRandomString(unsigned int length) noexcept

	Generate a random string of a particular length that only contains letters and numbers.

	Parameters

	length – The length of the generated string.

	Returns

	The generated string.

	
static const char *GetSHA256Hash(const char *inputString) noexcept

	Get the SHA256 hash corresponding to an input string.

function is not reentrant due to a static variable

	Parameters

	inputString – The input string.

	Returns

	The SHA256 hash.

	
static unsigned int GetLastPlayerId() noexcept

	Get the last player ID currently connected to the server.

function is not reentrant due to a static variable

Every player receives a unique numerical index known as their player ID upon joining the server.

	Returns

	The player ID.

	
static int GetCurrentMpNum() noexcept

	Get the current (latest) mpNum generated by the server.

Every object that did not exist in an .ESM or .ESP data file and has instead been placed or spawned through a server-sent packet has a numerical index known as its mpNum.

When ObjectPlace and ObjectSpawn packets are received from players, their objects lack mpNums, so the server assigns them some based on incrementing the server’s current mpNum, with the operation’s final mpNum becoming the server’s new current mpNum.

	Returns

	The mpNum.

	
static void SetCurrentMpNum(int mpNum) noexcept

	Set the current (latest) mpNum generated by the server.

When restarting a server, it is important to revert to the previous current (latest) mpNum as stored in the server’s data, so as to avoid starting over from 0 and ending up assigning duplicate mpNums to objects.

	Parameters

	mpNum – The number that should be used as the new current mpNum.

	Returns

	void

Object functions

	
class ObjectFunctions

	
Public Static Functions

	
static void ReadReceivedObjectList() noexcept

	Use the last object list received by the server as the one being read.

	Returns

	void

	
static void ClearObjectList() noexcept

	Clear the data from the object list stored on the server.

	Returns

	void

	
static void SetObjectListPid(unsigned short pid) noexcept

	Set the pid attached to the ObjectList.

	Parameters

	pid – The player ID to whom the object list should be attached.

	Returns

	void

	
static void CopyReceivedObjectListToStore() noexcept

	Take the contents of the read-only object list last received by the server from a player and move its contents to the stored object list that can be sent by the server.

	Returns

	void

	
static unsigned int GetObjectListSize() noexcept

	Get the number of indexes in the read object list.

	Returns

	The number of indexes.

	
static unsigned char GetObjectListOrigin() noexcept

	Get the origin of the read object list.

	Returns

	The origin (0 for CLIENT_GAMEPLAY, 1 for CLIENT_CONSOLE, 2 for CLIENT_DIALOGUE, 3 for CLIENT_SCRIPT_LOCAL, 4 for CLIENT_SCRIPT_GLOBAL, 5 for SERVER_SCRIPT).

	
static const char *GetObjectListClientScript() noexcept

	Get the client script that the read object list originated from.

	Returns

	The ID of the client script.

	
static unsigned char GetObjectListAction() noexcept

	Get the action type used in the read object list.

	Returns

	The action type (0 for SET, 1 for ADD, 2 for REMOVE, 3 for REQUEST).

	
static const char *GetObjectListConsoleCommand() noexcept

	Get the console command used in the read object list.

	Returns

	The console command.

	
static unsigned char GetObjectListContainerSubAction() noexcept

	Get the container subaction type used in the read object list.

	Returns

	The action type (0 for NONE, 1 for DRAG, 2 for DROP, 3 for TAKE_ALL).

	
static bool IsObjectPlayer(unsigned int index) noexcept

	Check whether the object at a certain index in the read object list is a player.

Note: Although most player data and events are dealt with in Player packets, object activation is general enough for players themselves to be included as objects in ObjectActivate packets.

	Parameters

	index – The index of the object.

	Returns

	Whether the object is a player.

	
static int GetObjectPid(unsigned int index) noexcept

	Get the player ID of the object at a certain index in the read object list, only valid if the object is a player.

Note: Currently, players can only be objects in ObjectActivate and ConsoleCommand packets.

	Parameters

	index – The index of the object.

	Returns

	The player ID of the object.

	
static const char *GetObjectRefId(unsigned int index) noexcept

	Get the refId of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The refId.

	
static unsigned int GetObjectRefNum(unsigned int index) noexcept

	Get the refNum of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The refNum.

	
static unsigned int GetObjectMpNum(unsigned int index) noexcept

	Get the mpNum of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The mpNum.

	
static int GetObjectCount(unsigned int index) noexcept

	Get the count of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The object count.

	
static int GetObjectCharge(unsigned int index) noexcept

	Get the charge of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The charge.

	
static double GetObjectEnchantmentCharge(unsigned int index) noexcept

	Get the enchantment charge of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The enchantment charge.

	
static const char *GetObjectSoul(unsigned int index) noexcept

	Get the soul of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The soul.

	
static int GetObjectGoldValue(unsigned int index) noexcept

	Get the gold value of the object at a certain index in the read object list.

This is used solely to get the gold value of gold. It is not used for other objects.

	Parameters

	index – The index of the object.

	Returns

	The gold value.

	
static double GetObjectScale(unsigned int index) noexcept

	Get the object scale of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The object scale.

	
static const char *GetObjectSoundId(unsigned int index) noexcept

	Get the object sound ID of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The object sound ID.

	
static bool GetObjectState(unsigned int index) noexcept

	Get the object state of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The object state.

	
static int GetObjectDoorState(unsigned int index) noexcept

	Get the door state of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The door state.

	
static int GetObjectLockLevel(unsigned int index) noexcept

	Get the lock level of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The lock level.

	
static unsigned int GetObjectDialogueChoiceType(unsigned int index) noexcept

	Get the dialogue choice type for the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The dialogue choice type.

	
static const char *GetObjectDialogueChoiceTopic(unsigned int index) noexcept

	Get the dialogue choice topic for the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The dialogue choice topic.

	
static unsigned int GetObjectGoldPool(unsigned int index) noexcept

	Get the gold pool of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The gold pool.

	
static double GetObjectLastGoldRestockHour(unsigned int index) noexcept

	Get the hour of the last gold restock of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The hour of the last gold restock.

	
static int GetObjectLastGoldRestockDay(unsigned int index) noexcept

	Get the day of the last gold restock of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The day of the last gold restock.

	
static bool DoesObjectHavePlayerActivating(unsigned int index) noexcept

	Check whether the object at a certain index in the read object list has been activated by a player.

	Parameters

	index – The index of the object.

	Returns

	Whether the object has been activated by a player.

	
static int GetObjectActivatingPid(unsigned int index) noexcept

	Get the player ID of the player activating the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The player ID of the activating player.

	
static const char *GetObjectActivatingRefId(unsigned int index) noexcept

	Get the refId of the actor activating the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The refId of the activating actor.

	
static unsigned int GetObjectActivatingRefNum(unsigned int index) noexcept

	Get the refNum of the actor activating the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The refNum of the activating actor.

	
static unsigned int GetObjectActivatingMpNum(unsigned int index) noexcept

	Get the mpNum of the actor activating the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The mpNum of the activating actor.

	
static const char *GetObjectActivatingName(unsigned int index) noexcept

	Get the name of the actor activating the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The name of the activating actor.

	
static bool GetObjectHitSuccess(unsigned int index) noexcept

	Check whether the object at a certain index in the read object list has been hit successfully.

	Parameters

	index – The index of the object.

	Returns

	The success state.

	
static double GetObjectHitDamage(unsigned int index) noexcept

	Get the damage caused to the object at a certain index in the read object list in a hit.

	Parameters

	index – The index of the object.

	Returns

	The damage.

	
static bool GetObjectHitBlock(unsigned int index) noexcept

	Check whether the object at a certain index in the read object list has blocked the hit on it.

	Parameters

	index – The index of the object.

	Returns

	The block state.

	
static bool GetObjectHitKnockdown(unsigned int index) noexcept

	Check whether the object at a certain index in the read object list has been knocked down.

	Parameters

	index – The index of the object.

	Returns

	The knockdown state.

	
static bool DoesObjectHavePlayerHitting(unsigned int index) noexcept

	Check whether the object at a certain index in the read object list has been hit by a player.

	Parameters

	index – The index of the object.

	Returns

	Whether the object has been hit by a player.

	
static int GetObjectHittingPid(unsigned int index) noexcept

	Get the player ID of the player hitting the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The player ID of the hitting player.

	
static const char *GetObjectHittingRefId(unsigned int index) noexcept

	Get the refId of the actor hitting the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The refId of the hitting actor.

	
static unsigned int GetObjectHittingRefNum(unsigned int index) noexcept

	Get the refNum of the actor hitting the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The refNum of the hitting actor.

	
static unsigned int GetObjectHittingMpNum(unsigned int index) noexcept

	Get the mpNum of the actor hitting the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The mpNum of the hitting actor.

	
static const char *GetObjectHittingName(unsigned int index) noexcept

	Get the name of the actor hitting the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The name of the hitting actor.

	
static bool GetObjectSummonState(unsigned int index) noexcept

	Check whether the object at a certain index in the read object list is a summon.

Only living actors can be summoned.

	Returns

	The summon state.

	
static double GetObjectSummonEffectId(unsigned int index) noexcept

	Get the summon effect ID of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The summon effect ID.

	
static const char *GetObjectSummonSpellId(unsigned int index) noexcept

	Get the summon spell ID of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The summon spell ID.

	
static double GetObjectSummonDuration(unsigned int index) noexcept

	Get the summon duration of the object at a certain index in the read object list.

Note: Returns -1 if indefinite.

	Parameters

	index – The index of the object.

	Returns

	The summon duration.

	
static bool DoesObjectHavePlayerSummoner(unsigned int index) noexcept

	Check whether the object at a certain index in the read object list has a player as its summoner.

Only living actors can be summoned.

	Parameters

	index – The index of the object.

	Returns

	Whether a player is the summoner of the object.

	
static int GetObjectSummonerPid(unsigned int index) noexcept

	Get the player ID of the summoner of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The player ID of the summoner.

	
static const char *GetObjectSummonerRefId(unsigned int index) noexcept

	Get the refId of the actor summoner of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The refId of the summoner.

	
static unsigned int GetObjectSummonerRefNum(unsigned int index) noexcept

	Get the refNum of the actor summoner of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The refNum of the summoner.

	
static unsigned int GetObjectSummonerMpNum(unsigned int index) noexcept

	Get the mpNum of the actor summoner of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The mpNum of the summoner.

	
static double GetObjectPosX(unsigned int index) noexcept

	Get the X position of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The X position.

	
static double GetObjectPosY(unsigned int index) noexcept

	Get the Y position of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The Y position.

	
static double GetObjectPosZ(unsigned int index) noexcept

	Get the Z position at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The Z position.

	
static double GetObjectRotX(unsigned int index) noexcept

	Get the X rotation of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The X rotation.

	
static double GetObjectRotY(unsigned int index) noexcept

	Get the Y rotation of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The Y rotation.

	
static double GetObjectRotZ(unsigned int index) noexcept

	Get the Z rotation of the object at a certain index in the read object list.

	Parameters

	index – The index of the object.

	Returns

	The Z rotation.

	
static const char *GetVideoFilename(unsigned int index) noexcept

	Get the videoFilename of the object at a certain index in the read object list.

	Returns

	The videoFilename.

	
static unsigned int GetClientLocalsSize(unsigned int objectIndex) noexcept

	Get the number of client local variables of the object at a certain index in the read object list.

	Parameters

	objectIndex – The index of the object.

	Returns

	The number of client local variables.

	
static unsigned int GetClientLocalInternalIndex(unsigned int objectIndex, unsigned int variableIndex) noexcept

	Get the internal script index of the client local variable at a certain variableIndex in the client locals of the object at a certain objectIndex in the read object list.

	Parameters

	
	objectIndex – The index of the object.

	variableIndex – The index of the client local.

	Returns

	The internal script index.

	
static unsigned short GetClientLocalVariableType(unsigned int objectIndex, unsigned int variableIndex) noexcept

	Get the type of the client local variable at a certain variableIndex in the client locals of the object at a certain objectIndex in the read object list.

	Parameters

	
	objectIndex – The index of the object.

	variableIndex – The index of the client local.

	Returns

	The variable type (0 for INTEGER, 1 for LONG, 2 for FLOAT).

	
static int GetClientLocalIntValue(unsigned int objectIndex, unsigned int variableIndex) noexcept

	Get the integer value of the client local variable at a certain variableIndex in the client locals of the object at a certain objectIndex in the read object list.

	Parameters

	
	objectIndex – The index of the object.

	variableIndex – The index of the client local.

	Returns

	The integer value.

	
static double GetClientLocalFloatValue(unsigned int objectIndex, unsigned int variableIndex) noexcept

	Get the float value of the client local variable at a certain variableIndex in the client locals of the object at a certain objectIndex in the read object list.

	Parameters

	
	objectIndex – The index of the object.

	variableIndex – The index of the client local.

	Returns

	The float value.

	
static unsigned int GetContainerChangesSize(unsigned int objectIndex) noexcept

	Get the number of container item indexes of the object at a certain index in the read object list.

	Parameters

	objectIndex – The index of the object.

	Returns

	The number of container item indexes.

	
static const char *GetContainerItemRefId(unsigned int objectIndex, unsigned int itemIndex) noexcept

	Get the refId of the container item at a certain itemIndex in the container changes of the object at a certain objectIndex in the read object list.

	Parameters

	
	objectIndex – The index of the object.

	itemIndex – The index of the container item.

	Returns

	The refId.

	
static int GetContainerItemCount(unsigned int objectIndex, unsigned int itemIndex) noexcept

	Get the item count of the container item at a certain itemIndex in the container changes of the object at a certain objectIndex in the read object list.

	Parameters

	
	objectIndex – The index of the object.

	itemIndex – The index of the container item.

	Returns

	The item count.

	
static int GetContainerItemCharge(unsigned int objectIndex, unsigned int itemIndex) noexcept

	Get the charge of the container item at a certain itemIndex in the container changes of the object at a certain objectIndex in the read object list.

	Parameters

	
	objectIndex – The index of the object.

	itemIndex – The index of the container item.

	Returns

	The charge.

	
static double GetContainerItemEnchantmentCharge(unsigned int objectIndex, unsigned int itemIndex) noexcept

	Get the enchantment charge of the container item at a certain itemIndex in the container changes of the object at a certain objectIndex in the read object list.

	Parameters

	
	objectIndex – The index of the object.

	itemIndex – The index of the container item.

	Returns

	The enchantment charge.

	
static const char *GetContainerItemSoul(unsigned int objectIndex, unsigned int itemIndex) noexcept

	Get the soul of the container item at a certain itemIndex in the container changes of the object at a certain objectIndex in the read object list.

	Parameters

	
	objectIndex – The index of the object.

	itemIndex – The index of the container item.

	Returns

	The soul.

	
static int GetContainerItemActionCount(unsigned int objectIndex, unsigned int itemIndex) noexcept

	Get the action count of the container item at a certain itemIndex in the container changes of the object at a certain objectIndex in the read object list.

	Parameters

	
	objectIndex – The index of the object.

	itemIndex – The index of the container item.

	Returns

	The action count.

	
static bool DoesObjectHaveContainer(unsigned int index) noexcept

	Check whether the object at a certain index in the read object list has a container.

Note: Only ObjectLists from ObjectPlace packets contain this information. Objects from received ObjectSpawn packets can always be assumed to have a container.

	Parameters

	index – The index of the object.

	Returns

	Whether the object has a container.

	
static bool IsObjectDroppedByPlayer(unsigned int index) noexcept

	Check whether the object at a certain index in the read object list has been dropped by a player.

Note: Only ObjectLists from ObjectPlace packets contain this information.

	Parameters

	index – The index of the object.

	Returns

	Whether the object has been dropped by a player.

	
static void SetObjectListCell(const char *cellDescription) noexcept

	Set the cell of the temporary object list stored on the server.

The cell is determined to be an exterior cell if it fits the pattern of a number followed by a comma followed by another number.

	Parameters

	cellDescription – The description of the cell.

	Returns

	void

	
static void SetObjectListAction(unsigned char action) noexcept

	Set the action type of the temporary object list stored on the server.

	Parameters

	action – The action type (0 for SET, 1 for ADD, 2 for REMOVE, 3 for REQUEST).

	Returns

	void

	
static void SetObjectListContainerSubAction(unsigned char subAction) noexcept

	Set the container subaction type of the temporary object list stored on the server.

	Parameters

	subAction – The action type (0 for NONE, 1 for DRAG, 2 for DROP, 3 for TAKE_ALL, 4 for REPLY_TO_REQUEST, 5 for RESTOCK_RESULT).

	Returns

	void

	
static void SetObjectListConsoleCommand(const char *consoleCommand) noexcept

	Set the console command of the temporary object list stored on the server.

When sent, the command will run once on every object added to the object list. If no objects have been added, it will run once without any object reference.

	Parameters

	consoleCommand – The console command.

	Returns

	void

	
static void SetObjectRefId(const char *refId) noexcept

	Set the refId of the temporary object stored on the server.

	Parameters

	refId – The refId.

	Returns

	void

	
static void SetObjectRefNum(int refNum) noexcept

	Set the refNum of the temporary object stored on the server.

Every object loaded from .ESM and .ESP data files has a unique refNum which needs to be retained to refer to it in packets.

On the other hand, objects placed or spawned via the server should always have a refNum of 0.

	Parameters

	refNum – The refNum.

	Returns

	void

	
static void SetObjectMpNum(int mpNum) noexcept

	Set the mpNum of the temporary object stored on the server.

Every object placed or spawned via the server is assigned an mpNum by incrementing the last mpNum stored on the server. Scripts should take care to ensure that mpNums are kept unique for these objects.

Objects loaded from .ESM and .ESP data files should always have an mpNum of 0, because they have unique refNumes instead.

	Parameters

	mpNum – The mpNum.

	Returns

	void

	
static void SetObjectCount(int count) noexcept

	Set the object count of the temporary object stored on the server.

This determines the quantity of an object, with the exception of gold.

	Parameters

	count – The object count.

	Returns

	void

	
static void SetObjectCharge(int charge) noexcept

	Set the charge of the temporary object stored on the server.

Object durabilities are set through this value.

	Parameters

	charge – The charge.

	Returns

	void

	
static void SetObjectEnchantmentCharge(double enchantmentCharge) noexcept

	Set the enchantment charge of the temporary object stored on the server.

Object durabilities are set through this value.

	Parameters

	enchantmentCharge – The enchantment charge.

	Returns

	void

	
static void SetObjectSoul(const char *soul) noexcept

	Set the soul of the temporary object stored on the server.

	Parameters

	soul – The ID of the soul.

	Returns

	void

	
static void SetObjectGoldValue(int goldValue) noexcept

	Set the gold value of the temporary object stored on the server.

This is used solely to set the gold value for gold. It has no effect on other objects.

	Parameters

	goldValue – The gold value.

	Returns

	void

	
static void SetObjectScale(double scale) noexcept

	Set the scale of the temporary object stored on the server.

Objects are smaller or larger than their default size based on their scale.

	Parameters

	scale – The scale.

	Returns

	void

	
static void SetObjectState(bool objectState) noexcept

	Set the object state of the temporary object stored on the server.

Objects are enabled or disabled based on their object state.

	Parameters

	objectState – The object state.

	Returns

	void

	
static void SetObjectLockLevel(int lockLevel) noexcept

	Set the lock level of the temporary object stored on the server.

	Parameters

	lockLevel – The lock level.

	Returns

	void

	
static void SetObjectDialogueChoiceType(unsigned int dialogueChoiceType) noexcept

	Set the dialogue choice type of the temporary object stored on the server.

	Parameters

	dialogueChoiceType – The dialogue choice type.

	Returns

	void

	
static void SetObjectDialogueChoiceTopic(const char *topic) noexcept

	Set the dialogue choice topic for the temporary object stored on the server.

	Parameters

	topic – The dialogue choice topic.

	Returns

	void

	
static void SetObjectGoldPool(unsigned int goldPool) noexcept

	Set the gold pool of the temporary object stored on the server.

	Parameters

	goldPool – The gold pool.

	Returns

	void

	
static void SetObjectLastGoldRestockHour(double hour) noexcept

	Set the hour of the last gold restock of the temporary object stored on the server.

	Parameters

	hour – The hour of the last gold restock.

	Returns

	void

	
static void SetObjectLastGoldRestockDay(int day) noexcept

	Set the day of the last gold restock of the temporary object stored on the server.

	Parameters

	day – The day of the last gold restock.

	Returns

	void

	
static void SetObjectDisarmState(bool disarmState) noexcept

	Set the disarm state of the temporary object stored on the server.

	Parameters

	disarmState – The disarmState.

	Returns

	void

	
static void SetObjectDroppedByPlayerState(bool dropedByPlayerState) noexcept

	Set the droppedByPlayer state of the temporary object stored on the server.

	Parameters

	dropedByPlayerState – Whether the object has been dropped by a player or not.

	Returns

	void

	
static void SetObjectPosition(double x, double y, double z) noexcept

	Set the position of the temporary object stored on the server.

	Parameters

	
	x – The X position.

	y – The Y position.

	z – The Z position.

	Returns

	void

	
static void SetObjectRotation(double x, double y, double z) noexcept

	Set the rotation of the temporary object stored on the server.

	Parameters

	
	x – The X rotation.

	y – The Y rotation.

	z – The Z rotation.

	Returns

	void

	
static void SetObjectSummonState(bool summonState) noexcept

	Set the summon state of the temporary object stored on the server.

This only affects living actors and determines whether they are summons of another living actor.

	Parameters

	summonState – The summon state.

	Returns

	void

	
static void SetObjectSummonEffectId(int summonEffectId) noexcept

	Set the summon effect ID of the temporary object stored on the server.

	Parameters

	summonEffectId – The summon effect ID.

	Returns

	void

	
static void SetObjectSummonSpellId(const char *summonSpellId) noexcept

	Set the summon spell ID of the temporary object stored on the server.

	Parameters

	summonSpellId – The summon spell ID.

	Returns

	void

	
static void SetObjectSummonDuration(double summonDuration) noexcept

	Set the summon duration of the temporary object stored on the server.

	Parameters

	summonDuration – The summon duration.

	Returns

	void

	
static void SetObjectSummonerPid(unsigned short pid) noexcept

	Set the player ID of the summoner of the temporary object stored on the server.

	Parameters

	pid – The player ID of the summoner.

	Returns

	void

	
static void SetObjectSummonerRefNum(int refNum) noexcept

	Set the refNum of the actor summoner of the temporary object stored on the server.

	Parameters

	refNum – The refNum of the summoner.

	Returns

	void

	
static void SetObjectSummonerMpNum(int mpNum) noexcept

	Set the mpNum of the actor summoner of the temporary object stored on the server.

	Parameters

	mpNum – The mpNum of the summoner.

	Returns

	void

	
static void SetObjectActivatingPid(unsigned short pid) noexcept

	Set the player ID of the player activating the temporary object stored on the server. Currently only used for ObjectActivate packets.

	Parameters

	pid – The pid of the player.

	Returns

	void

	
static void SetObjectDoorState(int doorState) noexcept

	Set the door state of the temporary object stored on the server.

Doors are open or closed based on their door state.

	Parameters

	doorState – The door state.

	Returns

	void

	
static void SetObjectDoorTeleportState(bool teleportState) noexcept

	Set the teleport state of the temporary object stored on the server.

If a door’s teleport state is true, interacting with the door teleports a player to its destination. If it’s false, it opens and closes like a regular door.

	Parameters

	teleportState – The teleport state.

	Returns

	void

	
static void SetObjectDoorDestinationCell(const char *cellDescription) noexcept

	Set the door destination cell of the temporary object stored on the server.

The cell is determined to be an exterior cell if it fits the pattern of a number followed by a comma followed by another number.

	Parameters

	cellDescription – The description of the cell.

	Returns

	void

	
static void SetObjectDoorDestinationPosition(double x, double y, double z) noexcept

	Set the door destination position of the temporary object stored on the server.

	Parameters

	
	x – The X position.

	y – The Y position.

	z – The Z position.

	Returns

	void

	
static void SetObjectDoorDestinationRotation(double x, double z) noexcept

	Set the door destination rotation of the temporary object stored on the server.

Note: Because this sets the rotation a player will have upon using the door, and rotation on the Y axis has no effect on players, the Y value has been omitted as an argument.

	Parameters

	
	x – The X rotation.

	z – The Z rotation.

	Returns

	void

	
static void SetPlayerAsObject(unsigned short pid) noexcept

	Set a player as the object in the temporary object stored on the server. Currently only used for ConsoleCommand packets.

	Parameters

	pid – The pid of the player.

	Returns

	void

	
static void SetContainerItemRefId(const char *refId) noexcept

	Set the refId of the temporary container item stored on the server.

	Parameters

	refId – The refId.

	Returns

	void

	
static void SetContainerItemCount(int count) noexcept

	Set the item count of the temporary container item stored on the server.

	Parameters

	count – The item count.

	Returns

	void

	
static void SetContainerItemCharge(int charge) noexcept

	Set the charge of the temporary container item stored on the server.

	Parameters

	charge – The charge.

	Returns

	void

	
static void SetContainerItemEnchantmentCharge(double enchantmentCharge) noexcept

	Set the enchantment charge of the temporary container item stored on the server.

	Parameters

	enchantmentCharge – The enchantment charge.

	Returns

	void

	
static void SetContainerItemSoul(const char *soul) noexcept

	Set the soul of the temporary container item stored on the server.

	Parameters

	soul – The soul.

	Returns

	void

	
static void SetContainerItemActionCountByIndex(unsigned int objectIndex, unsigned int itemIndex, int actionCount) noexcept

	Set the action count of the container item at a certain itemIndex in the container changes of the object at a certain objectIndex in the object list stored on the server.

When resending a received Container packet, this allows you to correct the amount of items removed from a container by a player when it conflicts with what other players have already taken.

	Parameters

	
	objectIndex – The index of the object.

	itemIndex – The index of the container item.

	actionCount – The action count.

	Returns

	void

	
static void AddObject() noexcept

	Add a copy of the server’s temporary object to the server’s currently stored object list.

In the process, the server’s temporary object will automatically be cleared so a new one can be set up.

	Returns

	void

	
static void AddClientLocalInteger(int internalIndex, int intValue, unsigned int variableType) noexcept

	Add a client local variable with an integer value to the client locals of the server’s temporary object.

	Parameters

	
	internalIndex – The internal script index of the client local.

	variableType – The variable type (0 for SHORT, 1 for LONG).

	intValue – The integer value of the client local.

	Returns

	void

	
static void AddClientLocalFloat(int internalIndex, double floatValue) noexcept

	Add a client local variable with a float value to the client locals of the server’s temporary object.

	Parameters

	
	internalIndex – The internal script index of the client local.

	floatValue – The float value of the client local.

	Returns

	void

	
static void AddContainerItem() noexcept

	Add a copy of the server’s temporary container item to the container changes of the server’s temporary object.

In the process, the server’s temporary container item will automatically be cleared so a new one can be set up.

	Returns

	void

	
static void SendObjectActivate(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send an ObjectActivate packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendObjectPlace(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send an ObjectPlace packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendObjectSpawn(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send an ObjectSpawn packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendObjectDelete(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send an ObjectDelete packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendObjectLock(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send an ObjectLock packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendObjectDialogueChoice(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send an ObjectDialogueChoice packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendObjectMiscellaneous(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send an ObjectMiscellaneous packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendObjectRestock(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send an ObjectRestock packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendObjectTrap(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send an ObjectTrap packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendObjectScale(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send an ObjectScale packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendObjectSound(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send an ObjectSound packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendObjectState(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send an ObjectState packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendObjectMove(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send an ObjectMove packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendObjectRotate(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send an ObjectRotate packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendDoorState(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a DoorState packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendDoorDestination(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a DoorDestination packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendContainer(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a Container packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendVideoPlay(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a VideoPlay packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendClientScriptLocal(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a ClientScriptLocal packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendConsoleCommand(bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a ConsoleCommand packet.

	Parameters

	
	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

Position functions

	
class PositionFunctions

	
Public Static Functions

	
static double GetPosX(unsigned short pid) noexcept

	Get the X position of a player.

	Parameters

	pid – The player ID.

	Returns

	The X position.

	
static double GetPosY(unsigned short pid) noexcept

	Get the Y position of a player.

	Parameters

	pid – The player ID.

	Returns

	The Y position.

	
static double GetPosZ(unsigned short pid) noexcept

	Get the Z position of a player.

	Parameters

	pid – The player ID.

	Returns

	The Z position.

	
static double GetPreviousCellPosX(unsigned short pid) noexcept

	Get the X position of a player from before their latest cell change.

	Parameters

	pid – The player ID.

	Returns

	The X position.

	
static double GetPreviousCellPosY(unsigned short pid) noexcept

	Get the Y position of a player from before their latest cell change.

	Parameters

	pid – The player ID.

	Returns

	The Y position.

	
static double GetPreviousCellPosZ(unsigned short pid) noexcept

	Get the Z position of a player from before their latest cell change.

	Parameters

	pid – The player ID.

	Returns

	The Z position.

	
static double GetRotX(unsigned short pid) noexcept

	Get the X rotation of a player.

	Parameters

	pid – The player ID.

	Returns

	The X rotation.

	
static double GetRotZ(unsigned short pid) noexcept

	Get the Z rotation of a player.

	Parameters

	pid – The player ID.

	Returns

	The Z rotation.

	
static void SetPos(unsigned short pid, double x, double y, double z) noexcept

	Set the position of a player.

This changes the positional coordinates recorded for that player in the server memory, but does not by itself send a packet.

	Parameters

	
	pid – The player ID.

	x – The X position.

	y – The Y position.

	z – The Z position.

	Returns

	void

	
static void SetRot(unsigned short pid, double x, double z) noexcept

	Set the rotation of a player.

This changes the rotational coordinates recorded for that player in the server memory, but does not by itself send a packet.

A player’s Y rotation is always 0, which is why there is no Y rotation parameter.

	Parameters

	
	pid – The player ID.

	x – The X position.

	z – The Z position.

	Returns

	void

	
static void SetMomentum(unsigned short pid, double x, double y, double z) noexcept

	Set the momentum of a player.

This changes the coordinates recorded for that player’s momentum in the server memory, but does not by itself send a packet.

	Parameters

	
	pid – The player ID.

	x – The X momentum.

	y – The Y momentum.

	z – The Z momentum.

	Returns

	void

	
static void SendPos(unsigned short pid) noexcept

	Send a PlayerPosition packet about a player.

It is only sent to the affected player.

	Parameters

	pid – The player ID.

	Returns

	void

	
static void SendMomentum(unsigned short pid) noexcept

	Send a PlayerMomentum packet about a player.

It is only sent to the affected player.

	Parameters

	pid – The player ID.

	Returns

	void

Quest functions

	
class QuestFunctions

	
Public Static Functions

	
static void ClearJournalChanges(unsigned short pid) noexcept

	Clear the last recorded journal changes for a player.

This is used to initialize the sending of new PlayerJournal packets.

	Parameters

	pid – The player ID whose journal changes should be used.

	Returns

	void

	
static unsigned int GetJournalChangesSize(unsigned short pid) noexcept

	Get the number of indexes in a player’s latest journal changes.

	Parameters

	pid – The player ID whose journal changes should be used.

	Returns

	The number of indexes.

	
static void AddJournalEntry(unsigned short pid, const char *quest, unsigned int index, const char *actorRefId) noexcept

	Add a new journal item of type ENTRY to the journal changes for a player, with a specific timestamp.

	Parameters

	
	pid – The player ID whose journal changes should be used.

	quest – The quest of the journal item.

	index – The quest index of the journal item.

	actorRefId – The actor refId of the journal item.

	Returns

	void

	
static void AddJournalEntryWithTimestamp(unsigned short pid, const char *quest, unsigned int index, const char *actorRefId, unsigned int daysPassed, unsigned int month, unsigned int day) noexcept

	Add a new journal item of type ENTRY to the journal changes for a player, with a specific timestamp.

	Parameters

	
	pid – The player ID whose journal changes should be used.

	quest – The quest of the journal item.

	index – The quest index of the journal item.

	actorRefId – The actor refId of the journal item.

	daysPassed – The daysPassed for the journal item.

	month – The month for the journal item.

	day – The day of the month for the journal item.

	Returns

	void

	
static void AddJournalIndex(unsigned short pid, const char *quest, unsigned int index) noexcept

	Add a new journal item of type INDEX to the journal changes for a player.

	Parameters

	
	pid – The player ID whose journal changes should be used.

	quest – The quest of the journal item.

	index – The quest index of the journal item.

	Returns

	void

	
static void SetReputation(unsigned short pid, int value) noexcept

	Set the reputation of a certain player.

	Parameters

	
	pid – The player ID.

	value – The reputation.

	Returns

	void

	
static const char *GetJournalItemQuest(unsigned short pid, unsigned int index) noexcept

	Get the quest at a certain index in a player’s latest journal changes.

	Parameters

	
	pid – The player ID whose journal changes should be used.

	index – The index of the journalItem.

	Returns

	The quest.

	
static int GetJournalItemIndex(unsigned short pid, unsigned int index) noexcept

	Get the quest index at a certain index in a player’s latest journal changes.

	Parameters

	
	pid – The player ID whose journal changes should be used.

	index – The index of the journalItem.

	Returns

	The quest index.

	
static int GetJournalItemType(unsigned short pid, unsigned int index) noexcept

	Get the journal item type at a certain index in a player’s latest journal changes.

	Parameters

	
	pid – The player ID whose journal changes should be used.

	index – The index of the journalItem.

	Returns

	The type (0 for ENTRY, 1 for INDEX).

	
static const char *GetJournalItemActorRefId(unsigned short pid, unsigned int index) noexcept

	Get the actor refId at a certain index in a player’s latest journal changes.

Every journal change has an associated actor, which is usually the quest giver.

	Parameters

	
	pid – The player ID whose journal changes should be used.

	index – The index of the journalItem.

	Returns

	The actor refId.

	
static int GetReputation(unsigned short pid) noexcept

	Get the a certain player’s reputation.

	Parameters

	pid – The player ID.

	Returns

	The reputation.

	
static void SendJournalChanges(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a PlayerJournal packet with a player’s recorded journal changes.

	Parameters

	
	pid – The player ID whose journal changes should be used.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendReputation(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a PlayerReputation packet with a player’s recorded reputation.

	Parameters

	
	pid – The player ID whose reputation should be used.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

Records Dynamic functions

	
class RecordsDynamicFunctions

	
Public Static Functions

	
static void ClearRecords() noexcept

	Clear the data from the records stored on the server.

	Returns

	void

	
static unsigned short GetRecordType() noexcept

	Get the type of records in the read worldstate’s dynamic records.

	Returns

	The type of records (0 for SPELL, 1 for POTION, 2 for ENCHANTMENT, 3 for NPC).

	
static unsigned int GetRecordCount() noexcept

	Get the number of records in the read worldstate’s dynamic records.

	Returns

	The number of records.

	
static unsigned int GetRecordEffectCount(unsigned int recordIndex) noexcept

	Get the number of effects for the record at a certain index in the read worldstate’s current records.

	Parameters

	recordIndex – The index of the record.

	Returns

	The number of effects.

	
static const char *GetRecordId(unsigned int index) noexcept

	Get the id of the record at a certain index in the read worldstate’s dynamic records of the current type.

	Parameters

	index – The index of the record.

	Returns

	The id of the record.

	
static const char *GetRecordBaseId(unsigned int index) noexcept

	Get the base id (i.e. the id this record should inherit default values from) of the record at a certain index in the read worldstate’s dynamic records of the current type.

	Parameters

	index – The index of the record.

	Returns

	The base id of the record.

	
static int GetRecordSubtype(unsigned int index) noexcept

	Get the subtype of the record at a certain index in the read worldstate’s dynamic records of the current type.

	Parameters

	index – The index of the record.

	Returns

	The type of the record.

	
static const char *GetRecordName(unsigned int index) noexcept

	Get the name of the record at a certain index in the read worldstate’s dynamic records of the current type.

	Parameters

	index – The index of the record.

	Returns

	The name of the record.

	
static const char *GetRecordModel(unsigned int index) noexcept

	Get the model of the record at a certain index in the read worldstate’s dynamic records of the current type.

	Parameters

	index – The index of the record.

	Returns

	The model of the record.

	
static const char *GetRecordIcon(unsigned int index) noexcept

	Get the icon of the record at a certain index in the read worldstate’s dynamic records of the current type.

	Parameters

	index – The index of the record.

	Returns

	The icon of the record.

	
static const char *GetRecordScript(unsigned int index) noexcept

	Get the script of the record at a certain index in the read worldstate’s dynamic records of the current type.

	Parameters

	index – The index of the record.

	Returns

	The script of the record.

	
static const char *GetRecordEnchantmentId(unsigned int index) noexcept

	Get the enchantment id of the record at a certain index in the read worldstate’s dynamic records of the current type.

	Parameters

	index – The index of the record.

	Returns

	The enchantment id of the record.

	
static int GetRecordEnchantmentCharge(unsigned int index) noexcept

	Get the enchantment charge of the record at a certain index in the read worldstate’s dynamic records of the current type.

	Parameters

	index – The index of the record.

	Returns

	The enchantment charge of the record.

	
static int GetRecordAutoCalc(unsigned int index) noexcept

	Get the auto-calculation flag value of the record at a certain index in the read worldstate’s dynamic records of the current type.

	Parameters

	index – The index of the record.

	Returns

	The auto-calculation flag value of the record.

	
static int GetRecordCharge(unsigned int index) noexcept

	Get the charge of the record at a certain index in the read worldstate’s dynamic records of the current type.

	Parameters

	index – The index of the record.

	Returns

	The charge of the record.

	
static int GetRecordCost(unsigned int index) noexcept

	Get the cost of the record at a certain index in the read worldstate’s dynamic records of the current type.

	Parameters

	index – The index of the record.

	Returns

	The cost of the record.

	
static int GetRecordFlags(unsigned int index) noexcept

	Get the flags of the record at a certain index in the read worldstate’s dynamic records of the current type.

	Parameters

	index – The index of the record.

	Returns

	The flags of the spell as an integer.

	
static int GetRecordValue(unsigned int index) noexcept

	Get the value of the record at a certain index in the read worldstate’s dynamic records of the current type.

	Parameters

	index – The index of the record.

	Returns

	The value of the record.

	
static double GetRecordWeight(unsigned int index) noexcept

	Get the weight of the record at a certain index in the read worldstate’s dynamic records of the current type.

	Parameters

	index – The index of the record.

	Returns

	The weight of the record.

	
static unsigned int GetRecordQuantity(unsigned int index) noexcept

	Get the quantity of the record at a certain index in the read worldstate’s dynamic records of the current type.

	Parameters

	index – The index of the record.

	Returns

	The brewed count of the record.

	
static unsigned int GetRecordEffectId(unsigned int recordIndex, unsigned int effectIndex) noexcept

	Get the ID of the effect at a certain index in the read worldstate’s current records.

	Parameters

	
	recordIndex – The index of the record.

	effectIndex – The index of the effect.

	Returns

	The ID of the effect.

	
static int GetRecordEffectAttribute(unsigned int recordIndex, unsigned int effectIndex) noexcept

	Get the ID of the attribute modified by the effect at a certain index in the read worldstate’s current records.

	Parameters

	
	recordIndex – The index of the record.

	effectIndex – The index of the effect.

	Returns

	The attribute ID for the effect.

	
static int GetRecordEffectSkill(unsigned int recordIndex, unsigned int effectIndex) noexcept

	Get the ID of the skill modified by the effect at a certain index in the read worldstate’s current records.

	Parameters

	
	recordIndex – The index of the record.

	effectIndex – The index of the effect.

	Returns

	The skill ID for the effect.

	
static unsigned int GetRecordEffectRangeType(unsigned int recordIndex, unsigned int effectIndex) noexcept

	Get the range type of the effect at a certain index in the read worldstate’s current records (0 for self, 1 for touch, 2 for target).

	Parameters

	
	recordIndex – The index of the record.

	effectIndex – The index of the effect.

	Returns

	The range of the effect.

	
static int GetRecordEffectArea(unsigned int recordIndex, unsigned int effectIndex) noexcept

	Get the area of the effect at a certain index in the read worldstate’s current records.

	Parameters

	
	recordIndex – The index of the record.

	effectIndex – The index of the effect.

	Returns

	The area of the effect.

	
static int GetRecordEffectDuration(unsigned int recordIndex, unsigned int effectIndex) noexcept

	Get the duration of the effect at a certain index in the read worldstate’s current records.

	Parameters

	
	recordIndex – The index of the record.

	effectIndex – The index of the effect.

	Returns

	The duration of the effect.

	
static int GetRecordEffectMagnitudeMax(unsigned int recordIndex, unsigned int effectIndex) noexcept

	Get the maximum magnitude of the effect at a certain index in the read worldstate’s current records.

	Parameters

	
	recordIndex – The index of the record.

	effectIndex – The index of the effect.

	Returns

	The maximum magnitude of the effect.

	
static int GetRecordEffectMagnitudeMin(unsigned int recordIndex, unsigned int effectIndex) noexcept

	Get the minimum magnitude of the effect at a certain index in the read worldstate’s current records.

	Parameters

	
	recordIndex – The index of the record.

	effectIndex – The index of the effect.

	Returns

	The minimum magnitude of the effect.

	
static void SetRecordType(unsigned int type) noexcept

	Set which type of temporary records stored on the server should have their data changed via setter functions.

	Parameters

	type – The type of records.

	Returns

	void

	
static void SetRecordId(const char *id) noexcept

	Set the id of the temporary record stored on the server for the currently specified record type.

	Parameters

	id – The id of the record.

	Returns

	void

	
static void SetRecordBaseId(const char *baseId) noexcept

	Set the base id (i.e. the id this record should inherit default values from) of the temporary record stored on the server for the currently specified record type.

	Parameters

	baseId – The baseId of the record.

	Returns

	void

	
static void SetRecordInventoryBaseId(const char *inventoryBaseId) noexcept

	Set the inventory base id (i.e. the id this record should inherit its inventory contents from) of the temporary record stored on the server for the currently specified record type.

	Parameters

	inventoryBaseId – The inventoryBaseId of the record.

	Returns

	void

	
static void SetRecordSubtype(unsigned int subtype) noexcept

	Set the subtype of the temporary record stored on the server for the currently specified record type.

	Parameters

	subtype – The spell type.

	Returns

	void

	
static void SetRecordName(const char *name) noexcept

	Set the name of the temporary record stored on the server for the currently specified record type.

	Parameters

	name – The name of the record.

	Returns

	void

	
static void SetRecordModel(const char *model) noexcept

	Set the model of the temporary record stored on the server for the currently specified record type.

	Parameters

	model – The model of the record.

	Returns

	void

	
static void SetRecordIcon(const char *icon) noexcept

	Set the icon of the temporary record stored on the server for the currently specified record type.

	Parameters

	icon – The icon of the record.

	Returns

	void

	
static void SetRecordScript(const char *script) noexcept

	Set the script of the temporary record stored on the server for the currently specified record type.

	Parameters

	script – The script of the record.

	Returns

	void

	
static void SetRecordEnchantmentId(const char *enchantmentId) noexcept

	Set the enchantment id of the temporary record stored on the server for the currently specified record type.

	Parameters

	enchantmentId – The enchantment id of the record.

	Returns

	void

	
static void SetRecordEnchantmentCharge(int enchantmentCharge) noexcept

	Set the enchantment charge of the temporary record stored on the server for the currently specified record type.

	Parameters

	enchantmentCharge – The enchantmentCharge of the record.

	Returns

	void

	
static void SetRecordAutoCalc(int autoCalc) noexcept

	Set the auto-calculation flag value of the temporary record stored on the server for the currently specified record type.

	Parameters

	autoCalc – The auto-calculation flag value of the record.

	Returns

	void

	
static void SetRecordCharge(int charge) noexcept

	Set the charge of the temporary record stored on the server for the currently specified record type.

	Parameters

	charge – The charge of the record.

	Returns

	void

	
static void SetRecordCost(int cost) noexcept

	Set the cost of the temporary record stored on the server for the currently specified record type.

	Parameters

	cost – The cost of the record.

	Returns

	void

	
static void SetRecordFlags(int flags) noexcept

	Set the flags of the temporary record stored on the server for the currently specified record type.

	Parameters

	flags – The flags of the record.

	Returns

	void

	
static void SetRecordValue(int value) noexcept

	Set the value of the temporary record stored on the server for the currently specified record type.

	Parameters

	value – The value of the record.

	Returns

	void

	
static void SetRecordWeight(double weight) noexcept

	Set the weight of the temporary record stored on the server for the currently specified record type.

	Parameters

	weight – The weight of the record.

	Returns

	void

	
static void SetRecordQuality(double quality) noexcept

	Set the item quality of the temporary record stored on the server for the currently specified record type.

	Parameters

	quality – The quality of the record.

	Returns

	void

	
static void SetRecordUses(int uses) noexcept

	Set the number of uses of the temporary record stored on the server for the currently specified record type.

	Parameters

	uses – The number of uses of the record.

	Returns

	void

	
static void SetRecordTime(int time) noexcept

	Set the time of the temporary record stored on the server for the currently specified record type.

	Parameters

	time – The time of the record.

	Returns

	void

	
static void SetRecordRadius(int radius) noexcept

	Set the radius of the temporary record stored on the server for the currently specified record type.

	Parameters

	radius – The radius of the record.

	Returns

	void

	
static void SetRecordColor(unsigned int red, unsigned int green, unsigned int blue) noexcept

	Set the color of the temporary record stored on the server for the currently specified record type.

	Parameters

	
	red – The red value of the record.

	green – The green value of the record.

	blue – The blue value of the record.

	Returns

	void

	
static void SetRecordArmorRating(int armorRating) noexcept

	Set the armor rating of the temporary record stored on the server for the currently specified record type.

	Parameters

	armorRating – The armor rating of the record.

	Returns

	void

	
static void SetRecordHealth(int health) noexcept

	Set the health of the temporary record stored on the server for the currently specified record type.

	Parameters

	health – The health of the record.

	Returns

	void

	
static void SetRecordDamageChop(unsigned int minDamage, unsigned int maxDamage) noexcept

	Set the chop damage of the temporary record stored on the server for the currently specified record type.

	Parameters

	
	minDamage – The minimum damage of the record.

	maxDamage – The maximum damage of the record.

	Returns

	void

	
static void SetRecordDamageSlash(unsigned int minDamage, unsigned int maxDamage) noexcept

	Set the slash damage of the temporary record stored on the server for the currently specified record type.

	Parameters

	
	minDamage – The minimum damage of the record.

	maxDamage – The maximum damage of the record.

	Returns

	void

	
static void SetRecordDamageThrust(unsigned int minDamage, unsigned int maxDamage) noexcept

	Set the thrust damage of the temporary record stored on the server for the currently specified record type.

	Parameters

	
	minDamage – The minimum damage of the record.

	maxDamage – The maximum damage of the record.

	Returns

	void

	
static void SetRecordReach(double reach) noexcept

	Set the reach of the temporary record stored on the server for the currently specified record type.

	Parameters

	reach – The reach of the record.

	Returns

	void

	
static void SetRecordSpeed(double speed) noexcept

	Set the speed of the temporary record stored on the server for the currently specified record type.

	Parameters

	speed – The speed of the record.

	Returns

	void

	
static void SetRecordKeyState(bool keyState) noexcept

	Set whether the temporary record stored on the server for the currently specified record type is a key.

Note: This is only applicable to Miscellaneous records.

	Parameters

	keyState – Whether the record is a key.

	Returns

	void

	
static void SetRecordScrollState(bool scrollState) noexcept

	Set whether the temporary record stored on the server for the currently specified record type is a scroll.

Note: This is only applicable to Book records.

	Parameters

	scrollState – Whether the record is a scroll.

	Returns

	void

	
static void SetRecordSkillId(int skillId) noexcept

	Set the skill ID of the temporary record stored on the server for the currently specified record type.

	Parameters

	skillId – The skill ID of the record.

	Returns

	void

	
static void SetRecordText(const char *text) noexcept

	Set the text of the temporary record stored on the server for the currently specified record type.

	Parameters

	text – The text of the record.

	Returns

	void

	
static void SetRecordHair(const char *hair) noexcept

	Set the hair of the temporary record stored on the server for the currently specified record type.

	Parameters

	hair – The hair of the record.

	Returns

	void

	
static void SetRecordHead(const char *head) noexcept

	Set the head of the temporary record stored on the server for the currently specified record type.

	Parameters

	head – The head of the record.

	Returns

	void

	
static void SetRecordGender(unsigned int gender) noexcept

	Set the gender of the temporary record stored on the server for the currently specified record type (0 for female, 1 for male).

	Parameters

	gender – The gender of the record.

	Returns

	void

	
static void SetRecordRace(const char *race) noexcept

	Set the race of the temporary record stored on the server for the currently specified record type.

	Parameters

	race – The race of the record.

	Returns

	void

	
static void SetRecordClass(const char *charClass) noexcept

	Set the character class of the temporary record stored on the server for the currently specified record type.

	Parameters

	charClass – The character class of the record.

	Returns

	void

	
static void SetRecordFaction(const char *faction) noexcept

	Set the faction of the temporary record stored on the server for the currently specified record type.

	Parameters

	faction – The faction of the record.

	Returns

	void

	
static void SetRecordScale(double scale) noexcept

	Set the scale of the temporary record stored on the server for the currently specified record type.

	Parameters

	scale – The scale of the record.

	Returns

	void

	
static void SetRecordBloodType(int bloodType) noexcept

	Set the blood type of the temporary record stored on the server for the currently specified record type.

	Parameters

	bloodType – The blood type of the record.

	Returns

	void

	
static void SetRecordVampireState(bool vampireState) noexcept

	Set the vampire state of the temporary record stored on the server for the currently specified record type.

	Parameters

	vampireState – The vampire state of the record.

	Returns

	void

	
static void SetRecordLevel(int level) noexcept

	Set the level of the temporary record stored on the server for the currently specified record type.

	Parameters

	level – The level of the record.

	Returns

	void

	
static void SetRecordMagicka(int magicka) noexcept

	Set the magicka of the temporary record stored on the server for the currently specified record type.

	Parameters

	magicka – The magicka of the record.

	Returns

	void

	
static void SetRecordFatigue(int fatigue) noexcept

	Set the fatigue of the temporary record stored on the server for the currently specified record type.

	Parameters

	fatigue – The fatigue of the record.

	Returns

	void

	
static void SetRecordSoulValue(int soulValue) noexcept

	Set the soul value of the temporary record stored on the server for the currently specified record type.

	Parameters

	soulValue – The soul value of the record.

	Returns

	void

	
static void SetRecordAIFight(int aiFight) noexcept

	Set the AI fight value of the temporary record stored on the server for the currently specified record type.

	Parameters

	aiFight – The AI fight value of the record.

	Returns

	void

	
static void SetRecordAIFlee(int aiFlee) noexcept

	Set the AI flee value of the temporary record stored on the server for the currently specified record type.

	Parameters

	aiFlee – The AI flee value of the record.

	Returns

	void

	
static void SetRecordAIAlarm(int aiAlarm) noexcept

	Set the AI alarm value of the temporary record stored on the server for the currently specified record type.

	Parameters

	aiAlarm – The AI alarm value of the record.

	Returns

	void

	
static void SetRecordAIServices(int aiServices) noexcept

	Set the AI services value of the temporary record stored on the server for the currently specified record type.

	Parameters

	aiServices – The AI services value of the record.

	Returns

	void

	
static void SetRecordSound(const char *sound) noexcept

	Set the sound of the temporary record stored on the server for the currently specified record type.

	Parameters

	sound – The sound of the record.

	Returns

	void

	
static void SetRecordVolume(double volume) noexcept

	Set the volume of the temporary record stored on the server for the currently specified record type.

	Parameters

	volume – The volume of the record.

	Returns

	void

	
static void SetRecordMinRange(double minRange) noexcept

	Set the minimum range of the temporary record stored on the server for the currently specified record type.

	Parameters

	minRange – The minimum range of the record.

	Returns

	void

	
static void SetRecordMaxRange(double maxRange) noexcept

	Set the maximum range of the temporary record stored on the server for the currently specified record type.

	Parameters

	maxRange – The maximum range of the record.

	Returns

	void

	
static void SetRecordOpenSound(const char *sound) noexcept

	Set the opening sound of the temporary record stored on the server for the currently specified record type.

	Parameters

	sound – The opening sound of the record.

	Returns

	void

	
static void SetRecordCloseSound(const char *sound) noexcept

	Set the closing sound of the temporary record stored on the server for the currently specified record type.

	Parameters

	sound – The closing sound of the record.

	Returns

	void

	
static void SetRecordScriptText(const char *scriptText) noexcept

	Set the script text of the temporary record stored on the server for the currently specified record type.

	Parameters

	scriptText – The script text of the record.

	Returns

	void

	
static void SetRecordIntegerVariable(int intVar) noexcept

	Set the integer variable of the temporary record stored on the server for the currently specified record type.

	Parameters

	intVar – The integer variable of the record.

	Returns

	void

	
static void SetRecordFloatVariable(double floatVar) noexcept

	Set the float variable of the temporary record stored on the server for the currently specified record type.

	Parameters

	floatVar – The float variable of the record.

	Returns

	void

	
static void SetRecordStringVariable(const char *stringVar) noexcept

	Set the string variable of the temporary record stored on the server for the currently specified record type.

	Parameters

	stringVar – The string variable of the record.

	Returns

	void

	
static void SetRecordIdByIndex(unsigned int index, const char *id) noexcept

	Set the id of the record at a certain index in the records stored on the server.

When resending a received RecordsDynamic packet, this allows you to set the server-generated id of a record without having to clear and recreate the packet.

	Parameters

	
	index – The index of the record.

	id – The id of the record.

	Returns

	void

	
static void SetRecordEnchantmentIdByIndex(unsigned int index, const char *enchantmentId) noexcept

	Set the enchantment id of the record at a certain index in the records stored on the server.

When resending a received RecordsDynamic packet, this allows you to set the server-generated enchantment id of a record without having to clear and recreate the packet.

	Parameters

	
	index – The index of the record.

	enchantmentId – The enchantment id of the record.

	Returns

	void

	
static void SetRecordEffectId(unsigned int effectId) noexcept

	Set the ID of the temporary effect stored on the server.

	Parameters

	effectId – The ID of the effect.

	Returns

	void

	
static void SetRecordEffectAttribute(int attributeId) noexcept

	Set the ID of the attribute modified by the temporary effect stored on the server.

	Parameters

	attributeId – The ID of the attribute.

	Returns

	void

	
static void SetRecordEffectSkill(int skillId) noexcept

	Set the ID of the skill modified by the temporary effect stored on the server.

	Parameters

	skillId – The ID of the skill.

	Returns

	void

	
static void SetRecordEffectRangeType(unsigned int rangeType) noexcept

	Set the range type of the temporary effect stored on the server (0 for self, 1 for touch, 2 for target).

	Parameters

	rangeType – The range type of the effect.

	Returns

	void

	
static void SetRecordEffectArea(int area) noexcept

	Set the area of the temporary effect stored on the server.

	Parameters

	area – The area of the effect.

	Returns

	void

	
static void SetRecordEffectDuration(int duration) noexcept

	Set the duration of the temporary effect stored on the server.

	Parameters

	duration – The duration of the effect.

	Returns

	void

	
static void SetRecordEffectMagnitudeMax(int magnitudeMax) noexcept

	Set the maximum magnitude of the temporary effect stored on the server.

	Parameters

	magnitudeMax – The maximum magnitude of the effect.

	Returns

	void

	
static void SetRecordEffectMagnitudeMin(int magnitudeMin) noexcept

	Set the minimum magnitude of the temporary effect stored on the server.

	Parameters

	magnitudeMin – The minimum magnitude of the effect.

	Returns

	void

	
static void SetRecordBodyPartType(unsigned int partType) noexcept

	Set the body part type of the temporary body part stored on the server (which then needs to be added to ARMOR or CLOTHING records) or set the body part type of the current record if it’s a BODYPART.

	Parameters

	partType – The type of the body part.

	Returns

	void

	
static void SetRecordBodyPartIdForMale(const char *partId) noexcept

	Set the id of the male version of the temporary body part stored on the server.

	Parameters

	partId – The id of the body part.

	Returns

	void

	
static void SetRecordBodyPartIdForFemale(const char *partId) noexcept

	Set the id of the female version of the temporary body part stored on the server.

	Parameters

	partId – The id of the body part.

	Returns

	void

	
static void SetRecordInventoryItemId(const char *itemId) noexcept

	Set the id of the of the temporary inventory item stored on the server.

	Parameters

	itemId – The id of the inventory item.

	Returns

	void

	
static void SetRecordInventoryItemCount(unsigned int count) noexcept

	Set the count of the of the temporary inventory item stored on the server.

	Parameters

	count – The count of the inventory item.

	Returns

	void

	
static void AddRecord() noexcept

	Add a copy of the server’s temporary record of the current specified type to the stored records.

In the process, the server’s temporary record will automatically be cleared so a new one can be set up.

	Returns

	void

	
static void AddRecordEffect() noexcept

	Add a copy of the server’s temporary effect to the temporary record of the current specified type.

In the process, the server’s temporary effect will automatically be cleared so a new one can be set up.

	Returns

	void

	
static void AddRecordBodyPart() noexcept

	Add a copy of the server’s temporary body part to the temporary record of the current specified type.

In the process, the server’s temporary body part will automatically be cleared so a new one can be set up.

	Returns

	void

	
static void AddRecordInventoryItem() noexcept

	Add a copy of the server’s temporary inventory item to the temporary record of the current specified type.

In the process, the server’s temporary inventory item will automatically be cleared so a new one can be set up.

Note: Any items added this way will be ignored if the record already has a valid inventoryBaseId.

	Returns

	void

	
static void SendRecordDynamic(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a RecordDynamic packet with the current specified record type.

	Parameters

	
	pid – The player ID attached to the packet.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

Server functions

	
class ServerFunctions

	
Public Static Functions

	
static void LogMessage(unsigned short level, const char *message) noexcept

	Write a log message with its own timestamp.

It will have “[Script]:” prepended to it so as to mark it as a script-generated log message.

	Parameters

	
	level – The logging level used (0 for LOG_VERBOSE, 1 for LOG_INFO, 2 for LOG_WARN, 3 for LOG_ERROR, 4 for LOG_FATAL).

	message – The message logged.

	Returns

	void

	
static void LogAppend(unsigned short level, const char *message) noexcept

	Write a log message without its own timestamp.

It will have “[Script]:” prepended to it so as to mark it as a script-generated log message.

	Parameters

	
	level – The logging level used (0 for LOG_VERBOSE, 1 for LOG_INFO, 2 for LOG_WARN, 3 for LOG_ERROR, 4 for LOG_FATAL).

	message – The message logged.

	Returns

	void

	
static void StopServer(int code) noexcept

	Shut down the server.

	Parameters

	code – The shutdown code.

	Returns

	void

	
static void Kick(unsigned short pid) noexcept

	Kick a certain player from the server.

	Parameters

	pid – The player ID.

	Returns

	void

	
static void BanAddress(const char *ipAddress) noexcept

	Ban a certain IP address from the server.

	Parameters

	ipAddress – The IP address.

	Returns

	void

	
static void UnbanAddress(const char *ipAddress) noexcept

	Unban a certain IP address from the server.

	Parameters

	ipAddress – The IP address.

	Returns

	void

	
static bool DoesFilePathExist(const char *filePath) noexcept

	Check whether a certain file path exists.

This will be a case sensitive check on case sensitive filesystems.

Whenever you want to enforce case insensitivity, use GetCaseInsensitiveFilename() instead.

	Returns

	Whether the file exists or not.

	
static const char *GetCaseInsensitiveFilename(const char *folderPath, const char *filename) noexcept

	Get the first filename in a folder that has a case insensitive match with the filename argument.

This is used to retain case insensitivity when opening data files on Linux.

	Returns

	The filename that matches.

	
static const char *GetDataPath() noexcept

	Get the path of the server’s data folder.

	Returns

	The data path.

	
static unsigned int GetMillisecondsSinceServerStart() noexcept

	Get the milliseconds elapsed since the server was started.

	Returns

	The time since the server’s startup in milliseconds.

	
static const char *GetOperatingSystemType() noexcept

	Get the type of the operating system used by the server.

Note: Currently, the type can be “Windows”, “Linux”, “OS X” or “Unknown OS”.

	Returns

	The type of the operating system.

	
static const char *GetArchitectureType() noexcept

	Get the architecture type used by the server.

Note: Currently, the type can be “64-bit”, “32-bit”, “ARMv#” or “Unknown architecture”.

	Returns

	The architecture type.

	
static const char *GetServerVersion() noexcept

	Get the TES3MP version of the server.

	Returns

	The server version.

	
static const char *GetProtocolVersion() noexcept

	Get the protocol version of the server.

	Returns

	The protocol version.

	
static int GetAvgPing(unsigned short pid) noexcept

	Get the average ping of a certain player.

	Parameters

	pid – The player ID.

	Returns

	The average ping.

	
static const char *GetIP(unsigned short pid) noexcept

	Get the IP address of a certain player.

	Parameters

	pid – The player ID.

	Returns

	The IP address.

	
static unsigned short GetPort() noexcept

	Get the port used by the server.

	Returns

	The port.

	
static unsigned int GetMaxPlayers() noexcept

	Get the maximum number of players.

	Returns

	Max players

	
static bool HasPassword() noexcept

	Checking if the server requires a password to connect.

	Returns

	Whether the server requires a password

	
static bool GetDataFileEnforcementState() noexcept

	Get the data file enforcement state of the server.

If true, clients are required to use the same data files as set for the server.

	Returns

	The enforcement state.

	
static bool GetScriptErrorIgnoringState() noexcept

	Get the script error ignoring state of the server.

If true, script errors will not crash the server.

	Returns

	The script error ignoring state.

	
static void SetGameMode(const char *gameMode) noexcept

	Set the game mode of the server, as displayed in the server browser.

	Parameters

	gameMode – The new game mode.

	Returns

	void

	
static void SetHostname(const char *name) noexcept

	Set the name of the server, as displayed in the server browser.

	Parameters

	name – The new name.

	Returns

	void

	
static void SetServerPassword(const char *password) noexcept

	Set the password required to join the server.

	Parameters

	password – The password.

	Returns

	void

	
static void SetDataFileEnforcementState(bool state) noexcept

	Set the data file enforcement state of the server.

If true, clients are required to use the same data files as set for the server.

	Parameters

	state – The new enforcement state.

	Returns

	void

	
static void SetScriptErrorIgnoringState(bool state) noexcept

	Set whether script errors should be ignored or not.

If true, script errors will not crash the server, but could have any number of unforeseen consequences, which is why this is a highly experimental setting.

	Parameters

	state – The new script error ignoring state.

	Returns

	void

	
static void SetRuleString(const char *key, const char *value) noexcept

	Set a rule string for the server details displayed in the server browser.

	Parameters

	
	key – The name of the rule.

	value – The string value of the rule.

	Returns

	void

	
static void SetRuleValue(const char *key, double value) noexcept

	Set a rule value for the server details displayed in the server browser.

	Parameters

	
	key – The name of the rule.

	value – The numerical value of the rule.

	Returns

	void

	
static void AddDataFileRequirement(const char *dataFilename, const char *checksumString) noexcept

	Add a data file and a corresponding CRC32 checksum to the data file loadout that connecting clients need to match.

It can be used multiple times to set multiple checksums for the same data file.

Note: If an empty string is provided for the checksum, a checksum will not be required for that data file.

	Parameters

	
	dataFilename – The filename of the data file.

	checksumString – A string with the CRC32 checksum required.

Setting functions

	
class SettingFunctions

	
Public Static Functions

	
static void SetDifficulty(unsigned short pid, int difficulty)

	Set the difficulty for a player.

This changes the difficulty for that player in the server memory, but does not by itself send a packet.

	Parameters

	
	pid – The player ID.

	difficulty – The difficulty.

	Returns

	void

	
static void SetEnforcedLogLevel(unsigned short pid, int enforcedLogLevel)

	Set the client log level enforced for a player.

This changes the enforced log level for that player in the server memory, but does not by itself send a packet.

Enforcing a certain log level is necessary to prevent players from learning information from their console window that they are otherwise unable to obtain, such as the locations of other players.

If you do not wish to enforce a log level, simply set enforcedLogLevel to -1

	Parameters

	
	pid – The player ID.

	enforcedLogLevel – The enforced log level.

	Returns

	void

	
static void SetPhysicsFramerate(unsigned short pid, double physicsFramerate)

	Set the physics framerate for a player.

This changes the physics framerate for that player in the server memory, but does not by itself send a packet.

	Parameters

	
	pid – The player ID.

	physicsFramerate – The physics framerate.

	Returns

	void

	
static void SetConsoleAllowed(unsigned short pid, bool state)

	Set whether the console is allowed for a player.

This changes the console permission for that player in the server memory, but does not by itself send a packet.

	Parameters

	
	pid – The player ID.

	state – The console permission state.

	Returns

	void

	
static void SetBedRestAllowed(unsigned short pid, bool state)

	Set whether resting in beds is allowed for a player.

This changes the resting permission for that player in the server memory, but does not by itself send a packet.

	Parameters

	
	pid – The player ID.

	state – The resting permission state.

	Returns

	void

	
static void SetWildernessRestAllowed(unsigned short pid, bool state)

	Set whether resting in the wilderness is allowed for a player.

This changes the resting permission for that player in the server memory, but does not by itself send a packet.

	Parameters

	
	pid – The player ID.

	state – The resting permission state.

	Returns

	void

	
static void SetWaitAllowed(unsigned short pid, bool state)

	Set whether waiting is allowed for a player.

This changes the waiting permission for that player in the server memory, but does not by itself send a packet.

	Parameters

	
	pid – The player ID.

	state – The waiting permission state.

	Returns

	void

	
static void SetGameSettingValue(unsigned short pid, const char *setting, const char *value)

	Set value for a game setting.

This overrides the setting value set in OpenMW Launcher. Only applies to the Game category.

	Parameters

	
	pid – The player ID.

	setting – Name of a setting in the Game category

	value – Value of the setting (as a string)

	Returns

	void

	
static void ClearGameSettingValues(unsigned short pid)

	Clear the Game setting values stored for a player.

Clear any changes done by SetGameSettingValue()

	Parameters

	pid – The player ID.

	Returns

	void

	
static void SetVRSettingValue(unsigned short pid, const char *setting, const char *value)

	Set value for a VR setting.

This overrides the setting value set in OpenMW Launcher. Only applies to the VR category.

	Parameters

	
	pid – The player ID.

	setting – Name of a setting in the VR category

	value – Value of the setting (as a string)

	Returns

	void

	
static void ClearVRSettingValues(unsigned short pid)

	Clear the VR setting values stored for a player.

Clear any changes done by SetVRSettingValue()

	Parameters

	pid – The player ID.

	Returns

	void

	
static void SendSettings(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a PlayerSettings packet to the player affected by it.

	Parameters

	pid – The player ID to send it to.

	Returns

	void

Shapeshift functions

	
class ShapeshiftFunctions

	
Public Static Functions

	
static double GetScale(unsigned short pid) noexcept

	Get the scale of a player.

	Parameters

	pid – The player ID.

	Returns

	The scale.

	
static bool IsWerewolf(unsigned short pid) noexcept

	Check whether a player is a werewolf.

This is based on the last PlayerShapeshift packet received or sent for that player.

	Parameters

	pid – The player ID.

	Returns

	The werewolf state.

	
static const char *GetCreatureRefId(unsigned short pid) noexcept

	Get the refId of the creature the player is disguised as.

	Parameters

	pid – The player ID.

	Returns

	The creature refId.

	
static bool GetCreatureNameDisplayState(unsigned short pid) noexcept

	Check whether a player’s name is replaced by that of the creature they are disguised as when other players hover over them.

This is based on the last PlayerShapeshift packet received or sent for that player.

	Parameters

	pid – The player ID.

	Returns

	The creature name display state.

	
static void SetScale(unsigned short pid, double scale) noexcept

	Set the scale of a player.

This changes the scale recorded for that player in the server memory, but does not by itself send a packet.

	Parameters

	
	pid – The player ID.

	scale – The new scale.

	Returns

	void

	
static void SetWerewolfState(unsigned short pid, bool isWerewolf) noexcept

	Set the werewolf state of a player.

This changes the werewolf state recorded for that player in the server memory, but does not by itself send a packet.

	Parameters

	
	pid – The player ID.

	isWerewolf – The new werewolf state.

	Returns

	void

	
static void SetCreatureRefId(unsigned short pid, const char *refId) noexcept

	Set the refId of the creature a player is disguised as.

This changes the creature refId recorded for that player in the server memory, but does not by itself send a packet.

	Parameters

	
	pid – The player ID.

	refId – The creature refId.

	Returns

	void

	
static void SetCreatureNameDisplayState(unsigned short pid, bool displayState) noexcept

	Set whether a player’s name is replaced by that of the creature they are disguised as when other players hover over them.

	Parameters

	
	pid – The player ID.

	displayState – The creature name display state.

	Returns

	void

	
static void SendShapeshift(unsigned short pid)

	Send a PlayerShapeshift packet about a player.

This sends the packet to all players connected to the server. It is currently used only to communicate werewolf states.

	Parameters

	pid – The player ID.

	Returns

	void

Spell functions

	
class SpellFunctions

	
Public Static Functions

	
static void ClearSpellbookChanges(unsigned short pid) noexcept

	Clear the last recorded spellbook changes for a player.

This is used to initialize the sending of new PlayerSpellbook packets.

	Parameters

	pid – The player ID whose spellbook changes should be used.

	Returns

	void

	
static void ClearSpellsActiveChanges(unsigned short pid) noexcept

	Clear the last recorded spells active changes for a player.

This is used to initialize the sending of new PlayerSpellsActive packets.

	Parameters

	pid – The player ID whose spells active changes should be used.

	Returns

	void

	
static void ClearCooldownChanges(unsigned short pid) noexcept

	Clear the last recorded cooldown changes for a player.

This is used to initialize the sending of new PlayerCooldown packets.

	Parameters

	pid – The player ID whose cooldown changes should be used.

	Returns

	void

	
static unsigned int GetSpellbookChangesSize(unsigned short pid) noexcept

	Get the number of indexes in a player’s latest spellbook changes.

	Parameters

	pid – The player ID whose spellbook changes should be used.

	Returns

	The number of indexes.

	
static unsigned int GetSpellbookChangesAction(unsigned short pid) noexcept

	Get the action type used in a player’s latest spellbook changes.

	Parameters

	pid – The player ID whose spellbook changes should be used.

	Returns

	The action type (0 for SET, 1 for ADD, 2 for REMOVE).

	
static unsigned int GetSpellsActiveChangesSize(unsigned short pid) noexcept

	Get the number of indexes in a player’s latest spells active changes.

	Parameters

	pid – The player ID whose spells active changes should be used.

	Returns

	The number of indexes for spells active changes.

	
static unsigned int GetSpellsActiveChangesAction(unsigned short pid) noexcept

	Get the action type used in a player’s latest spells active changes.

	Parameters

	pid – The player ID whose spells active changes should be used.

	Returns

	The action type (0 for SET, 1 for ADD, 2 for REMOVE).

	
static unsigned int GetCooldownChangesSize(unsigned short pid) noexcept

	Get the number of indexes in a player’s latest cooldown changes.

	Parameters

	pid – The player ID whose cooldown changes should be used.

	Returns

	The number of indexes.

	
static void SetSpellbookChangesAction(unsigned short pid, unsigned char action) noexcept

	Set the action type in a player’s spellbook changes.

	Parameters

	
	pid – The player ID whose spellbook changes should be used.

	action – The action (0 for SET, 1 for ADD, 2 for REMOVE).

	Returns

	void

	
static void SetSpellsActiveChangesAction(unsigned short pid, unsigned char action) noexcept

	Set the action type in a player’s spells active changes.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	action – The action (0 for SET, 1 for ADD, 2 for REMOVE).

	Returns

	void

	
static void AddSpell(unsigned short pid, const char *spellId) noexcept

	Add a new spell to the spellbook changes for a player.

	Parameters

	
	pid – The player ID whose spellbook changes should be used.

	spellId – The spellId of the spell.

	Returns

	void

	
static void AddSpellActive(unsigned short pid, const char *spellId, const char *displayName, bool stackingState) noexcept

	Add a new active spell to the spells active changes for a player, using the temporary effect values stored so far.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	spellId – The spellId of the spell.

	displayName – The displayName of the spell.

	stackingState – Whether the spell should stack with other instances of itself.

	Returns

	void

	
static void AddSpellActiveEffect(unsigned short pid, int effectId, double magnitude, double duration, double timeLeft, int arg) noexcept

	Add a new effect to the next active spell that will be added to a player.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	effectId – The id of the effect.

	magnitude – The magnitude of the effect.

	duration – The duration of the effect.

	timeLeft – The timeLeft for the effect.

	arg – The arg of the effect when applicable, e.g. the skill used for Fortify Skill or the attribute used for Fortify Attribute.

	Returns

	void

	
static void AddCooldownSpell(unsigned short pid, const char *spellId, unsigned int startDay, double startHour) noexcept

	Add a new cooldown spell to the cooldown changes for a player.

	Parameters

	
	pid – The player ID whose cooldown changes should be used.

	spellId – The spellId of the spell.

	startDay – The day on which the cooldown starts.

	startHour – The hour at which the cooldown starts.

	Returns

	void

	
static const char *GetSpellId(unsigned short pid, unsigned int index) noexcept

	Get the spell id at a certain index in a player’s latest spellbook changes.

	Parameters

	
	pid – The player ID whose spellbook changes should be used.

	index – The index of the spell.

	Returns

	The spell id.

	
static const char *GetSpellsActiveId(unsigned short pid, unsigned int index) noexcept

	Get the spell id at a certain index in a player’s latest spells active changes.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	index – The index of the spell.

	Returns

	The spell id.

	
static const char *GetSpellsActiveDisplayName(unsigned short pid, unsigned int index) noexcept

	Get the spell display name at a certain index in a player’s latest spells active changes.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	index – The index of the spell.

	Returns

	The spell display name.

	
static bool GetSpellsActiveStackingState(unsigned short pid, unsigned int index) noexcept

	Get the spell stacking state at a certain index in a player’s latest spells active changes.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	index – The index of the spell.

	Returns

	The spell stacking state.

	
static unsigned int GetSpellsActiveEffectCount(unsigned short pid, unsigned int index) noexcept

	Get the number of effects at an index in a player’s latest spells active changes.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	index – The index of the spell.

	Returns

	The number of effects.

	
static unsigned int GetSpellsActiveEffectId(unsigned short pid, unsigned int spellIndex, unsigned int effectIndex) noexcept

	Get the id for an effect index at a spell index in a player’s latest spells active changes.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	spellIndex – The index of the spell.

	effectIndex – The index of the effect.

	Returns

	The id of the effect.

	
static int GetSpellsActiveEffectArg(unsigned short pid, unsigned int spellIndex, unsigned int effectIndex) noexcept

	Get the arg for an effect index at a spell index in a player’s latest spells active changes.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	spellIndex – The index of the spell.

	effectIndex – The index of the effect.

	Returns

	The arg of the effect.

	
static double GetSpellsActiveEffectMagnitude(unsigned short pid, unsigned int spellIndex, unsigned int effectIndex) noexcept

	Get the magnitude for an effect index at a spell index in a player’s latest spells active changes.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	spellIndex – The index of the spell.

	effectIndex – The index of the effect.

	Returns

	The magnitude of the effect.

	
static double GetSpellsActiveEffectDuration(unsigned short pid, unsigned int spellIndex, unsigned int effectIndex) noexcept

	Get the duration for an effect index at a spell index in a player’s latest spells active changes.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	spellIndex – The index of the spell.

	effectIndex – The index of the effect.

	Returns

	The duration of the effect.

	
static double GetSpellsActiveEffectTimeLeft(unsigned short pid, unsigned int spellIndex, unsigned int effectIndex) noexcept

	Get the time left for an effect index at a spell index in a player’s latest spells active changes.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	spellIndex – The index of the spell.

	effectIndex – The index of the effect.

	Returns

	The time left for the effect.

	
static bool DoesSpellsActiveHavePlayerCaster(unsigned short pid, unsigned int index) noexcept

	Check whether the spell at a certain index in a player’s latest spells active changes has a player as its caster.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	index – The index of the spell.

	Returns

	Whether a player is the caster of the spell.

	
static int GetSpellsActiveCasterPid(unsigned short pid, unsigned int index) noexcept

	Get the player ID of the caster of the spell at a certain index in a player’s latest spells active changes.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	index – The index of the spell.

	Returns

	The player ID of the caster.

	
static const char *GetSpellsActiveCasterRefId(unsigned short pid, unsigned int index) noexcept

	Get the refId of the actor caster of the spell at a certain index in a player’s latest spells active changes.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	index – The index of the spell.

	Returns

	The refId of the caster.

	
static unsigned int GetSpellsActiveCasterRefNum(unsigned short pid, unsigned int index) noexcept

	Get the refNum of the actor caster of the spell at a certain index in a player’s latest spells active changes.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	index – The index of the spell.

	Returns

	The refNum of the caster.

	
static unsigned int GetSpellsActiveCasterMpNum(unsigned short pid, unsigned int index) noexcept

	Get the mpNum of the actor caster of the spell at a certain index in a player’s latest spells active changes.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	index – The index of the spell.

	Returns

	The mpNum of the caster.

	
static const char *GetCooldownSpellId(unsigned short pid, unsigned int index) noexcept

	Get the spell id at a certain index in a player’s latest cooldown changes.

	Parameters

	
	pid – The player ID whose cooldown changes should be used.

	index – The index of the cooldown spell.

	Returns

	The spell id.

	
static unsigned int GetCooldownStartDay(unsigned short pid, unsigned int index) noexcept

	Get the starting day of the cooldown at a certain index in a player’s latest cooldown changes.

	Parameters

	
	pid – The player ID whose cooldown changes should be used.

	index – The index of the cooldown spell.

	Returns

	The starting day of the cooldown.

	
static double GetCooldownStartHour(unsigned short pid, unsigned int index) noexcept

	Get the starting hour of the cooldown at a certain index in a player’s latest cooldown changes.

	Parameters

	
	pid – The player ID whose cooldown changes should be used.

	index – The index of the cooldown spell.

	Returns

	The starting hour of the cooldown.

	
static void SendSpellbookChanges(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a PlayerSpellbook packet with a player’s recorded spellbook changes.

	Parameters

	
	pid – The player ID whose spellbook changes should be used.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendSpellsActiveChanges(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a PlayerSpellsActive packet with a player’s recorded spells active changes.

	Parameters

	
	pid – The player ID whose spells active changes should be used.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendCooldownChanges(unsigned short pid) noexcept

	Send a PlayerCooldowns packet with a player’s recorded cooldown changes.

	Parameters

	pid – The player ID whose cooldown changes should be used.

	Returns

	void

Stats functions

	
class StatsFunctions

	
Public Static Functions

	
static int GetAttributeCount() noexcept

	Get the number of attributes.

The number is 8 before any dehardcoding is done in OpenMW.

	Returns

	The number of attributes.

	
static int GetSkillCount() noexcept

	Get the number of skills.

The number is 27 before any dehardcoding is done in OpenMW.

	Returns

	The number of skills.

	
static int GetAttributeId(const char *name) noexcept

	Get the numerical ID of an attribute with a certain name.

If an invalid name is used, the ID returned is -1

	Parameters

	name – The name of the attribute.

	Returns

	The ID of the attribute.

	
static int GetSkillId(const char *name) noexcept

	Get the numerical ID of a skill with a certain name.

If an invalid name is used, the ID returned is -1

	Parameters

	name – The name of the skill.

	Returns

	The ID of the skill.

	
static const char *GetAttributeName(unsigned short attributeId) noexcept

	Get the name of the attribute with a certain numerical ID.

If an invalid ID is used, “invalid” is returned.

	Parameters

	attributeId – The ID of the attribute.

	Returns

	The name of the attribute.

	
static const char *GetSkillName(unsigned short skillId) noexcept

	Get the name of the skill with a certain numerical ID.

If an invalid ID is used, “invalid” is returned.

	Parameters

	skillId – The ID of the skill.

	Returns

	The name of the skill.

	
static const char *GetName(unsigned short pid) noexcept

	Get the name of a player.

	Parameters

	pid – The player ID.

	Returns

	The name of the player.

	
static const char *GetRace(unsigned short pid) noexcept

	Get the race of a player.

	Parameters

	pid – The player ID.

	Returns

	The race of the player.

	
static const char *GetHead(unsigned short pid) noexcept

	Get the head mesh used by a player.

	Parameters

	pid – The player ID.

	Returns

	The head mesh of the player.

	
static const char *GetHairstyle(unsigned short pid) noexcept

	Get the hairstyle mesh used by a player.

	Parameters

	pid – The player ID.

	Returns

	The hairstyle mesh of the player.

	
static int GetIsMale(unsigned short pid) noexcept

	Check whether a player is male or not.

	Parameters

	pid – The player ID.

	Returns

	Whether the player is male.

	
static const char *GetModel(unsigned short pid) noexcept

	Get the model of a player.

	Parameters

	pid – The player ID.

	Returns

	The model of the player.

	
static const char *GetBirthsign(unsigned short pid) noexcept

	Get the birthsign of a player.

	Parameters

	pid – The player ID.

	Returns

	The birthsign of the player.

	
static int GetLevel(unsigned short pid) noexcept

	Get the character level of a player.

	Parameters

	pid – The player ID.

	Returns

	The level of the player.

	
static int GetLevelProgress(unsigned short pid) noexcept

	Get the player’s progress to their next character level.

	Parameters

	pid – The player ID.

	Returns

	The level progress.

	
static double GetHealthBase(unsigned short pid) noexcept

	Get the base health of the player.

	Parameters

	pid – The player ID.

	Returns

	The base health.

	
static double GetHealthCurrent(unsigned short pid) noexcept

	Get the current health of the player.

	Parameters

	pid – The player ID.

	Returns

	The current health.

	
static double GetMagickaBase(unsigned short pid) noexcept

	Get the base magicka of the player.

	Parameters

	pid – The player ID.

	Returns

	The base magicka.

	
static double GetMagickaCurrent(unsigned short pid) noexcept

	Get the current magicka of the player.

	Parameters

	pid – The player ID.

	Returns

	The current magicka.

	
static double GetFatigueBase(unsigned short pid) noexcept

	Get the base fatigue of the player.

	Parameters

	pid – The player ID.

	Returns

	The base fatigue.

	
static double GetFatigueCurrent(unsigned short pid) noexcept

	Get the current fatigue of the player.

	Parameters

	pid – The player ID.

	Returns

	The current fatigue.

	
static int GetAttributeBase(unsigned short pid, unsigned short attributeId) noexcept

	Get the base value of a player’s attribute.

	Parameters

	
	pid – The player ID.

	attributeId – The attribute ID.

	Returns

	The base value of the attribute.

	
static int GetAttributeModifier(unsigned short pid, unsigned short attributeId) noexcept

	Get the modifier value of a player’s attribute.

	Parameters

	
	pid – The player ID.

	attributeId – The attribute ID.

	Returns

	The modifier value of the attribute.

	
static double GetAttributeDamage(unsigned short pid, unsigned short attributeId) noexcept

	Get the amount of damage (as caused through the Damage Attribute effect) to a player’s attribute.

	Parameters

	
	pid – The player ID.

	attributeId – The attribute ID.

	Returns

	The amount of damage to the attribute.

	
static int GetSkillBase(unsigned short pid, unsigned short skillId) noexcept

	Get the base value of a player’s skill.

	Parameters

	
	pid – The player ID.

	skillId – The skill ID.

	Returns

	The base value of the skill.

	
static int GetSkillModifier(unsigned short pid, unsigned short skillId) noexcept

	Get the modifier value of a player’s skill.

	Parameters

	
	pid – The player ID.

	skillId – The skill ID.

	Returns

	The modifier value of the skill.

	
static double GetSkillDamage(unsigned short pid, unsigned short skillId) noexcept

	Get the amount of damage (as caused through the Damage Skill effect) to a player’s skill.

	Parameters

	
	pid – The player ID.

	skillId – The skill ID.

	Returns

	The amount of damage to the skill.

	
static double GetSkillProgress(unsigned short pid, unsigned short skillId) noexcept

	Get the progress the player has made towards increasing a certain skill by 1.

	Parameters

	
	pid – The player ID.

	skillId – The skill ID.

	Returns

	The skill progress.

	
static int GetSkillIncrease(unsigned short pid, unsigned int attributeId) noexcept

	Get the bonus applied to a certain attribute at the next level up as a result of associated skill increases.

Although confusing, the term “skill increase” for this is taken from OpenMW itself.

	Parameters

	
	pid – The player ID.

	attributeId – The attribute ID.

	Returns

	The increase in the attribute caused by skills.

	
static int GetBounty(unsigned short pid) noexcept

	Get the bounty of the player.

	Parameters

	pid – The player ID.

	Returns

	The bounty.

	
static void SetName(unsigned short pid, const char *name) noexcept

	Set the name of a player.

	Parameters

	
	pid – The player ID.

	name – The new name of the player.

	Returns

	void

	
static void SetRace(unsigned short pid, const char *race) noexcept

	Set the race of a player.

	Parameters

	
	pid – The player ID.

	race – The new race of the player.

	Returns

	void

	
static void SetHead(unsigned short pid, const char *head) noexcept

	Set the head mesh used by a player.

	Parameters

	
	pid – The player ID.

	head – The new head mesh of the player.

	Returns

	void

	
static void SetHairstyle(unsigned short pid, const char *hairstyle) noexcept

	Set the hairstyle mesh used by a player.

	Parameters

	
	pid – The player ID.

	hairstyle – The new hairstyle mesh of the player.

	Returns

	void

	
static void SetIsMale(unsigned short pid, int state) noexcept

	Set whether a player is male or not.

	Parameters

	
	pid – The player ID.

	state – Whether the player is male.

	Returns

	void

	
static void SetModel(unsigned short pid, const char *model) noexcept

	Set the model of a player.

	Parameters

	
	pid – The player ID.

	model – The new model of the player.

	Returns

	void

	
static void SetBirthsign(unsigned short pid, const char *name) noexcept

	Set the birthsign of a player.

	Parameters

	
	pid – The player ID.

	name – The new birthsign of the player.

	Returns

	void

	
static void SetResetStats(unsigned short pid, bool resetStats) noexcept

	Set whether the player’s stats should be reset based on their current race as the result of a PlayerBaseInfo packet.

This changes the resetState for that player in the server memory, but does not by itself send a packet.

	Parameters

	
	pid – The player ID.

	resetStats – The stat reset state.

	Returns

	void

	
static void SetLevel(unsigned short pid, int value) noexcept

	Set the character level of a player.

	Parameters

	
	pid – The player ID.

	value – The new level of the player.

	Returns

	void

	
static void SetLevelProgress(unsigned short pid, int value) noexcept

	Set the player’s progress to their next character level.

	Parameters

	
	pid – The player ID.

	value – The new level progress of the player.

	Returns

	void

	
static void SetHealthBase(unsigned short pid, double value) noexcept

	Set the base health of a player.

	Parameters

	
	pid – The player ID.

	value – The new base health of the player.

	Returns

	void

	
static void SetHealthCurrent(unsigned short pid, double value) noexcept

	Set the current health of a player.

	Parameters

	
	pid – The player ID.

	value – The new current health of the player.

	Returns

	void

	
static void SetMagickaBase(unsigned short pid, double value) noexcept

	Set the base magicka of a player.

	Parameters

	
	pid – The player ID.

	value – The new base magicka of the player.

	Returns

	void

	
static void SetMagickaCurrent(unsigned short pid, double value) noexcept

	Set the current magicka of a player.

	Parameters

	
	pid – The player ID.

	value – The new current magicka of the player.

	Returns

	void

	
static void SetFatigueBase(unsigned short pid, double value) noexcept

	Set the base fatigue of a player.

	Parameters

	
	pid – The player ID.

	value – The new base fatigue of the player.

	Returns

	void

	
static void SetFatigueCurrent(unsigned short pid, double value) noexcept

	Set the current fatigue of a player.

	Parameters

	
	pid – The player ID.

	value – The new current fatigue of the player.

	Returns

	void

	
static void SetAttributeBase(unsigned short pid, unsigned short attributeId, int value) noexcept

	Set the base value of a player’s attribute.

	Parameters

	
	pid – The player ID.

	attributeId – The attribute ID.

	value – The new base value of the player’s attribute.

	Returns

	void

	
static void ClearAttributeModifier(unsigned short pid, unsigned short attributeId) noexcept

	Clear the modifier value of a player’s attribute.

There’s no way to set a modifier to a specific value because it can come from multiple different sources, but clearing it is a straightforward process that dispels associated effects on a client and, if necessary, unequips associated items.

	Parameters

	
	pid – The player ID.

	attributeId – The attribute ID.

	Returns

	void

	
static void SetAttributeDamage(unsigned short pid, unsigned short attributeId, double value) noexcept

	Set the amount of damage (as caused through the Damage Attribute effect) to a player’s attribute.

	Parameters

	
	pid – The player ID.

	attributeId – The attribute ID.

	value – The amount of damage to the player’s attribute.

	Returns

	void

	
static void SetSkillBase(unsigned short pid, unsigned short skillId, int value) noexcept

	Set the base value of a player’s skill.

	Parameters

	
	pid – The player ID.

	skillId – The skill ID.

	value – The new base value of the player’s skill.

	Returns

	void

	
static void ClearSkillModifier(unsigned short pid, unsigned short skillId) noexcept

	Clear the modifier value of a player’s skill.

There’s no way to set a modifier to a specific value because it can come from multiple different sources, but clearing it is a straightforward process that dispels associated effects on a client and, if necessary, unequips associated items.

	Parameters

	
	pid – The player ID.

	skillId – The skill ID.

	Returns

	void

	
static void SetSkillDamage(unsigned short pid, unsigned short skillId, double value) noexcept

	Set the amount of damage (as caused through the Damage Skill effect) to a player’s skill.

	Parameters

	
	pid – The player ID.

	skillId – The skill ID.

	value – The amount of damage to the player’s skill.

	Returns

	void

	
static void SetSkillProgress(unsigned short pid, unsigned short skillId, double value) noexcept

	Set the progress the player has made towards increasing a certain skill by 1.

	Parameters

	
	pid – The player ID.

	skillId – The skill ID.

	value – The progress value.

	Returns

	void

	
static void SetSkillIncrease(unsigned short pid, unsigned int attributeId, int value) noexcept

	Set the bonus applied to a certain attribute at the next level up as a result of associated skill increases.

Although confusing, the term “skill increase” for this is taken from OpenMW itself.

	Parameters

	
	pid – The player ID.

	attributeId – The attribute ID.

	value – The increase in the attribute caused by skills.

	Returns

	void

	
static void SetBounty(unsigned short pid, int value) noexcept

	Set the bounty of a player.

	Parameters

	
	pid – The player ID.

	value – The new bounty.

	Returns

	void

	
static void SetCharGenStage(unsigned short pid, int currentStage, int endStage) noexcept

	Set the current and ending stages of character generation for a player.

This is used to repeat part of character generation or to only go through part of it.

	Parameters

	
	pid – The player ID.

	currentStage – The new current stage.

	endStage – The new ending stage.

	Returns

	void

	
static void SendBaseInfo(unsigned short pid) noexcept

	Send a PlayerBaseInfo packet with a player’s name, race, head mesh, hairstyle mesh, birthsign and stat reset state.

It is always sent to all players.

	Parameters

	pid – The player ID.

	Returns

	void

	
static void SendStatsDynamic(unsigned short pid) noexcept

	Send a PlayerStatsDynamic packet with a player’s dynamic stats (health, magicka and fatigue).

It is always sent to all players.

	Parameters

	pid – The player ID.

	Returns

	void

	
static void SendAttributes(unsigned short pid) noexcept

	Send a PlayerAttribute packet with a player’s attributes and bonuses to those attributes at the next level up (the latter being called “skill increases” as in OpenMW).

It is always sent to all players.

	Parameters

	pid – The player ID.

	Returns

	void

	
static void SendSkills(unsigned short pid) noexcept

	Send a PlayerSkill packet with a player’s skills.

It is always sent to all players.

	Parameters

	pid – The player ID.

	Returns

	void

	
static void SendLevel(unsigned short pid) noexcept

	Send a PlayerLevel packet with a player’s character level and progress towards the next level up.

It is always sent to all players.

	Parameters

	pid – The player ID.

	Returns

	void

	
static void SendBounty(unsigned short pid) noexcept

	Send a PlayerBounty packet with a player’s bounty.

It is always sent to all players.

	Parameters

	pid – The player ID.

	Returns

	void

Worldstate functions

	
class WorldstateFunctions

	
Public Static Functions

	
static void ReadReceivedWorldstate() noexcept

	Use the last worldstate received by the server as the one being read.

	Returns

	void

	
static void CopyReceivedWorldstateToStore() noexcept

	Take the contents of the read-only worldstate last received by the server from a player and move its contents to the stored worldstate that can be sent by the server.

	Returns

	void

	
static void ClearKillChanges() noexcept

	Clear the kill count changes for the write-only worldstate.

This is used to initialize the sending of new WorldKillCount packets.

	Returns

	void

	
static void ClearMapChanges() noexcept

	Clear the map changes for the write-only worldstate.

This is used to initialize the sending of new WorldMap packets.

	Returns

	void

	
static void ClearClientGlobals() noexcept

	Clear the client globals for the write-only worldstate.

This is used to initialize the sending of new ClientScriptGlobal packets.

	Returns

	void

	
static unsigned int GetKillChangesSize() noexcept

	Get the number of indexes in the read worldstate’s kill changes.

	Returns

	The number of indexes.

	
static unsigned int GetMapChangesSize() noexcept

	Get the number of indexes in the read worldstate’s map changes.

	Returns

	The number of indexes.

	
static unsigned int GetClientGlobalsSize() noexcept

	Get the number of indexes in the read worldstate’s client globals.

	Returns

	The number of indexes.

	
static const char *GetKillRefId(unsigned int index) noexcept

	Get the refId at a certain index in the read worldstate’s kill count changes.

	Parameters

	index – The index of the kill count.

	Returns

	The refId.

	
static int GetKillNumber(unsigned int index) noexcept

	Get the number of kills at a certain index in the read worldstate’s kill count changes.

	Parameters

	index – The index of the kill count.

	Returns

	The number of kills.

	
static const char *GetWeatherRegion() noexcept

	Get the weather region in the read worldstate.

	Returns

	The weather region.

	
static int GetWeatherCurrent() noexcept

	Get the current weather in the read worldstate.

	Returns

	The current weather.

	
static int GetWeatherNext() noexcept

	Get the next weather in the read worldstate.

	Returns

	The next weather.

	
static int GetWeatherQueued() noexcept

	Get the queued weather in the read worldstate.

	Returns

	The queued weather.

	
static double GetWeatherTransitionFactor() noexcept

	Get the transition factor of the weather in the read worldstate.

	Returns

	The transition factor of the weather.

	
static int GetMapTileCellX(unsigned int index) noexcept

	Get the X coordinate of the cell corresponding to the map tile at a certain index in the read worldstate’s map tiles.

	Parameters

	index – The index of the map tile.

	Returns

	The X coordinate of the cell.

	
static int GetMapTileCellY(unsigned int index) noexcept

	Get the Y coordinate of the cell corresponding to the map tile at a certain index in the read worldstate’s map tiles.

	Parameters

	index – The index of the map tile.

	Returns

	The Y coordinate of the cell.

	
static const char *GetClientGlobalId(unsigned int index) noexcept

	Get the id of the global variable at a certain index in the read worldstate’s client globals.

	Parameters

	index – The index of the client global.

	Returns

	The id.

	
static unsigned short GetClientGlobalVariableType(unsigned int index) noexcept

	Get the type of the global variable at a certain index in the read worldstate’s client globals.

	Parameters

	index – The index of the client global.

	Returns

	The variable type (0 for INTEGER, 1 for LONG, 2 for FLOAT).

	
static int GetClientGlobalIntValue(unsigned int index) noexcept

	Get the integer value of the global variable at a certain index in the read worldstate’s client globals.

	Parameters

	index – The index of the client global.

	Returns

	The integer value.

	
static double GetClientGlobalFloatValue(unsigned int index) noexcept

	Get the float value of the global variable at a certain index in the read worldstate’s client globals.

	Parameters

	index – The index of the client global.

	Returns

	The float value.

	
static void SetAuthorityRegion(const char *authorityRegion) noexcept

	Set the region affected by the next WorldRegionAuthority packet sent.

	Parameters

	authorityRegion – The region.

	Returns

	void

	
static void SetWeatherRegion(const char *region) noexcept

	Set the weather region in the write-only worldstate stored on the server.

	Parameters

	region – The region.

	Returns

	void

	
static void SetWeatherForceState(bool forceState) noexcept

	Set the weather forcing state in the write-only worldstate stored on the server.

Players who receive a packet with forced weather will switch to that weather immediately.

	Parameters

	forceState – The weather forcing state.

	Returns

	void

	
static void SetWeatherCurrent(int currentWeather) noexcept

	Set the current weather in the write-only worldstate stored on the server.

	Parameters

	currentWeather – The current weather.

	Returns

	void

	
static void SetWeatherNext(int nextWeather) noexcept

	Set the next weather in the write-only worldstate stored on the server.

	Parameters

	nextWeather – The next weather.

	Returns

	void

	
static void SetWeatherQueued(int queuedWeather) noexcept

	Set the queued weather in the write-only worldstate stored on the server.

	Parameters

	queuedWeather – The queued weather.

	Returns

	void

	
static void SetWeatherTransitionFactor(double transitionFactor) noexcept

	Set the transition factor for the weather in the write-only worldstate stored on the server.

	Parameters

	transitionFactor – The transition factor.

	Returns

	void

	
static void SetHour(double hour) noexcept

	Set the world’s hour in the write-only worldstate stored on the server.

	Parameters

	hour – The hour.

	Returns

	void

	
static void SetDay(int day) noexcept

	Set the world’s day in the write-only worldstate stored on the server.

	Parameters

	day – The day.

	Returns

	void

	
static void SetMonth(int month) noexcept

	Set the world’s month in the write-only worldstate stored on the server.

	Parameters

	month – The month.

	Returns

	void

	
static void SetYear(int year) noexcept

	Set the world’s year in the write-only worldstate stored on the server.

	Parameters

	year – The year.

	Returns

	void

	
static void SetDaysPassed(int daysPassed) noexcept

	Set the world’s days passed in the write-only worldstate stored on the server.

	Parameters

	daysPassed – The days passed.

	Returns

	void

	
static void SetTimeScale(double timeScale) noexcept

	Set the world’s time scale in the write-only worldstate stored on the server.

	Parameters

	timeScale – The time scale.

	Returns

	void

	
static void SetPlayerCollisionState(bool state) noexcept

	Set the collision state for other players in the write-only worldstate stored on the server.

	Parameters

	state – The collision state.

	Returns

	void

	
static void SetActorCollisionState(bool state) noexcept

	Set the collision state for actors in the write-only worldstate stored on the server.

	Parameters

	state – The collision state.

	Returns

	void

	
static void SetPlacedObjectCollisionState(bool state) noexcept

	Set the collision state for placed objects in the write-only worldstate stored on the server.

	Parameters

	state – The collision state.

	Returns

	void

	
static void UseActorCollisionForPlacedObjects(bool useActorCollision) noexcept

	Whether placed objects with collision turned on should use actor collision, i.e. whether they should be slippery and prevent players from standing on them.

	Parameters

	useActorCollision – Whether to use actor collision.

	Returns

	void

	
static void AddKill(const char *refId, int number) noexcept

	Add a new kill count to the kill count changes.

	Parameters

	
	refId – The refId of the kill count.

	number – The number of kills in the kill count.

	Returns

	void

	
static void AddClientGlobalInteger(const char *id, int intValue, unsigned int variableType = 0) noexcept

	Add a new client global integer to the client globals.

	Parameters

	
	id – The id of the client global.

	variableType – The variable type (0 for SHORT, 1 for LONG).

	intValue – The integer value of the client global.

	Returns

	void

	
static void AddClientGlobalFloat(const char *id, double floatValue) noexcept

	Add a new client global float to the client globals.

	Parameters

	
	id – The id of the client global.

	floatValue – The float value of the client global.

	Returns

	void

	
static void AddSynchronizedClientScriptId(const char *scriptId) noexcept

	Add an ID to the list of script IDs whose variable changes should be sent to the the server by clients.

	Parameters

	scriptId – The ID.

	Returns

	void

	
static void AddSynchronizedClientGlobalId(const char *globalId) noexcept

	Add an ID to the list of global IDs whose value changes should be sent to the server by clients.

	Parameters

	globalId – The ID.

	Returns

	void

	
static void AddEnforcedCollisionRefId(const char *refId) noexcept

	Add a refId to the list of refIds for which collision should be enforced irrespective of other settings.

	Parameters

	refId – The refId.

	Returns

	void

	
static void AddCellToReset(const char *cellDescription) noexcept

	Add a cell with given cellDescription to the list of cells that should be reset on the client.

	Returns

	void

	
static void AddDestinationOverride(const char *oldCellDescription, const char *newCellDescription) noexcept

	Add a destination override containing the cell description for the old cell and the new cell.

	Parameters

	
	oldCellDescription – The old cell description.

	newCellDescription – The new cell description.

	Returns

	void

	
static void ClearSynchronizedClientScriptIds() noexcept

	Clear the list of script IDs whose variable changes should be sent to the the server by clients.

	Returns

	void

	
static void ClearSynchronizedClientGlobalIds() noexcept

	Clear the list of global IDs whose value changes should be sent to the the server by clients.

	Returns

	void

	
static void ClearEnforcedCollisionRefIds() noexcept

	Clear the list of refIds for which collision should be enforced irrespective of other settings.

	Returns

	void

	
static void ClearCellsToReset() noexcept

	Clear the list of cells which should be reset on the client.

	Returns

	void

	
static void ClearDestinationOverrides() noexcept

	Clear the list of destination overrides.

	Returns

	void

	
static void SaveMapTileImageFile(unsigned int index, const char *filePath) noexcept

	Save the .png image data of the map tile at a certain index in the read worldstate’s map changes.

	Parameters

	
	index – The index of the map tile.

	filePath – The file path of the resulting file.

	Returns

	void

	
static void LoadMapTileImageFile(int cellX, int cellY, const char *filePath) noexcept

	Load a .png file as the image data for a map tile and add it to the write-only worldstate stored on the server.

	Parameters

	
	cellX – The X coordinate of the cell corresponding to the map tile.

	cellY – The Y coordinate of the cell corresponding to the map tile.

	filePath – The file path of the loaded file.

	Returns

	void

	
static void SendClientScriptGlobal(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a ClientScriptGlobal packet with the current client script globals in the write-only worldstate.

	Parameters

	
	pid – The player ID attached to the packet.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendClientScriptSettings(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a ClientScriptSettings packet with the current client script settings in the write-only worldstate.

	Parameters

	
	pid – The player ID attached to the packet.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendWorldKillCount(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a WorldKillCount packet with the current set of kill count changes in the write-only worldstate.

	Parameters

	
	pid – The player ID attached to the packet.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendWorldRegionAuthority(unsigned short pid) noexcept

	Send a WorldRegionAuthority packet establishing a certain player as the only one who should process certain region-specific events (such as weather changes).

It is always sent to all players.

	Parameters

	pid – The player ID attached to the packet.

	Returns

	void

	
static void SendWorldMap(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a WorldMap packet with the current set of map changes in the write-only worldstate.

	Parameters

	
	pid – The player ID attached to the packet.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendWorldTime(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a WorldTime packet with the current time and time scale in the write-only worldstate.

	Parameters

	
	pid – The player ID attached to the packet.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendWorldWeather(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a WorldWeather packet with the current weather in the write-only worldstate.

	Parameters

	
	pid – The player ID attached to the packet.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendWorldCollisionOverride(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a WorldCollisionOverride packet with the current collision overrides in the write-only worldstate.

	Parameters

	
	pid – The player ID attached to the packet.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

	
static void SendCellReset(unsigned short pid, bool sendToOtherPlayers) noexcept

	Send a CellReset packet with a list of cells,.

	Parameters

	pid – The player ID attached to the packet.

	Returns

	void

	
static void SendWorldDestinationOverride(unsigned short pid, bool sendToOtherPlayers, bool skipAttachedPlayer) noexcept

	Send a WorldDestinationOverride packet with the current destination overrides in the write-only worldstate.

	Parameters

	
	pid – The player ID attached to the packet.

	sendToOtherPlayers – Whether this packet should be sent to players other than the player attached to the packet (false by default).

	skipAttachedPlayer – Whether the packet should skip being sent to the player attached to the packet (false by default).

	Returns

	void

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | M
 | O
 | P
 | Q
 | R
 | S
 | W

A

 	
 	ActorFunctions (C++ class)

 	ActorFunctions::AddActor (C++ function)

 	ActorFunctions::AddActorSpellActive (C++ function)

 	ActorFunctions::AddActorSpellActiveEffect (C++ function)

 	ActorFunctions::ClearActorList (C++ function)

 	ActorFunctions::CopyReceivedActorListToStore (C++ function)

 	ActorFunctions::DoesActorHavePlayerKiller (C++ function)

 	ActorFunctions::DoesActorHavePosition (C++ function)

 	ActorFunctions::DoesActorHaveStatsDynamic (C++ function)

 	ActorFunctions::DoesActorSpellsActiveHavePlayerCaster (C++ function)

 	ActorFunctions::EquipActorItem (C++ function)

 	ActorFunctions::GetActorCell (C++ function)

 	ActorFunctions::GetActorDeathState (C++ function)

 	ActorFunctions::GetActorEquipmentItemCharge (C++ function)

 	ActorFunctions::GetActorEquipmentItemCount (C++ function)

 	ActorFunctions::GetActorEquipmentItemEnchantmentCharge (C++ function)

 	ActorFunctions::GetActorEquipmentItemRefId (C++ function)

 	ActorFunctions::GetActorFatigueBase (C++ function)

 	ActorFunctions::GetActorFatigueCurrent (C++ function)

 	ActorFunctions::GetActorFatigueModified (C++ function)

 	ActorFunctions::GetActorHealthBase (C++ function)

 	ActorFunctions::GetActorHealthCurrent (C++ function)

 	ActorFunctions::GetActorHealthModified (C++ function)

 	ActorFunctions::GetActorKillerMpNum (C++ function)

 	ActorFunctions::GetActorKillerName (C++ function)

 	ActorFunctions::GetActorKillerPid (C++ function)

 	ActorFunctions::GetActorKillerRefId (C++ function)

 	ActorFunctions::GetActorKillerRefNum (C++ function)

 	ActorFunctions::GetActorListAction (C++ function)

 	ActorFunctions::GetActorListSize (C++ function)

 	ActorFunctions::GetActorMagickaBase (C++ function)

 	ActorFunctions::GetActorMagickaCurrent (C++ function)

 	ActorFunctions::GetActorMagickaModified (C++ function)

 	ActorFunctions::GetActorMpNum (C++ function)

 	ActorFunctions::GetActorPosX (C++ function)

 	ActorFunctions::GetActorPosY (C++ function)

 	ActorFunctions::GetActorPosZ (C++ function)

 	ActorFunctions::GetActorRefId (C++ function)

 	ActorFunctions::GetActorRefNum (C++ function)

 	ActorFunctions::GetActorRotX (C++ function)

 	ActorFunctions::GetActorRotY (C++ function)

 	ActorFunctions::GetActorRotZ (C++ function)

 	ActorFunctions::GetActorSpellsActiveCasterMpNum (C++ function)

 	ActorFunctions::GetActorSpellsActiveCasterPid (C++ function)

 	ActorFunctions::GetActorSpellsActiveCasterRefId (C++ function)

 	ActorFunctions::GetActorSpellsActiveCasterRefNum (C++ function)

 	ActorFunctions::GetActorSpellsActiveChangesAction (C++ function)

 	ActorFunctions::GetActorSpellsActiveChangesSize (C++ function)

 	ActorFunctions::GetActorSpellsActiveDisplayName (C++ function)

 	
 	ActorFunctions::GetActorSpellsActiveEffectArg (C++ function)

 	ActorFunctions::GetActorSpellsActiveEffectCount (C++ function)

 	ActorFunctions::GetActorSpellsActiveEffectDuration (C++ function)

 	ActorFunctions::GetActorSpellsActiveEffectId (C++ function)

 	ActorFunctions::GetActorSpellsActiveEffectMagnitude (C++ function)

 	ActorFunctions::GetActorSpellsActiveEffectTimeLeft (C++ function)

 	ActorFunctions::GetActorSpellsActiveId (C++ function)

 	ActorFunctions::GetActorSpellsActiveStackingState (C++ function)

 	ActorFunctions::ReadCellActorList (C++ function)

 	ActorFunctions::ReadReceivedActorList (C++ function)

 	ActorFunctions::SendActorAI (C++ function)

 	ActorFunctions::SendActorAuthority (C++ function)

 	ActorFunctions::SendActorCellChange (C++ function)

 	ActorFunctions::SendActorDeath (C++ function)

 	ActorFunctions::SendActorEquipment (C++ function)

 	ActorFunctions::SendActorList (C++ function)

 	ActorFunctions::SendActorPosition (C++ function)

 	ActorFunctions::SendActorSpeech (C++ function)

 	ActorFunctions::SendActorSpellsActiveChanges (C++ function)

 	ActorFunctions::SendActorStatsDynamic (C++ function)

 	ActorFunctions::SetActorAIAction (C++ function)

 	ActorFunctions::SetActorAICoordinates (C++ function)

 	ActorFunctions::SetActorAIDistance (C++ function)

 	ActorFunctions::SetActorAIDuration (C++ function)

 	ActorFunctions::SetActorAIRepetition (C++ function)

 	ActorFunctions::SetActorAITargetToObject (C++ function)

 	ActorFunctions::SetActorAITargetToPlayer (C++ function)

 	ActorFunctions::SetActorCell (C++ function)

 	ActorFunctions::SetActorDeathInstant (C++ function)

 	ActorFunctions::SetActorDeathState (C++ function)

 	ActorFunctions::SetActorFatigueBase (C++ function)

 	ActorFunctions::SetActorFatigueCurrent (C++ function)

 	ActorFunctions::SetActorFatigueModified (C++ function)

 	ActorFunctions::SetActorHealthBase (C++ function)

 	ActorFunctions::SetActorHealthCurrent (C++ function)

 	ActorFunctions::SetActorHealthModified (C++ function)

 	ActorFunctions::SetActorListAction (C++ function)

 	ActorFunctions::SetActorListCell (C++ function)

 	ActorFunctions::SetActorListPid (C++ function)

 	ActorFunctions::SetActorMagickaBase (C++ function)

 	ActorFunctions::SetActorMagickaCurrent (C++ function)

 	ActorFunctions::SetActorMagickaModified (C++ function)

 	ActorFunctions::SetActorMpNum (C++ function)

 	ActorFunctions::SetActorPosition (C++ function)

 	ActorFunctions::SetActorRefId (C++ function)

 	ActorFunctions::SetActorRefNum (C++ function)

 	ActorFunctions::SetActorRotation (C++ function)

 	ActorFunctions::SetActorSound (C++ function)

 	ActorFunctions::SetActorSpellsActiveAction (C++ function)

 	ActorFunctions::UnequipActorItem (C++ function)

B

 	
 	BookFunctions (C++ class)

 	BookFunctions::AddBook (C++ function)

 	BookFunctions::ClearBookChanges (C++ function)

 	
 	BookFunctions::GetBookChangesSize (C++ function)

 	BookFunctions::GetBookId (C++ function)

 	BookFunctions::SendBookChanges (C++ function)

C

 	
 	CellFunctions (C++ class)

 	CellFunctions::GetCell (C++ function)

 	CellFunctions::GetCellStateChangesSize (C++ function)

 	CellFunctions::GetCellStateDescription (C++ function)

 	CellFunctions::GetCellStateType (C++ function)

 	CellFunctions::GetExteriorX (C++ function)

 	CellFunctions::GetExteriorY (C++ function)

 	CellFunctions::GetRegion (C++ function)

 	CellFunctions::IsChangingRegion (C++ function)

 	CellFunctions::IsInExterior (C++ function)

 	CellFunctions::SendCell (C++ function)

 	CellFunctions::SetCell (C++ function)

 	CellFunctions::SetExteriorCell (C++ function)

 	CharClassFunctions (C++ class)

 	CharClassFunctions::GetClassDesc (C++ function)

 	CharClassFunctions::GetClassMajorAttribute (C++ function)

 	CharClassFunctions::GetClassMajorSkill (C++ function)

 	
 	CharClassFunctions::GetClassMinorSkill (C++ function)

 	CharClassFunctions::GetClassName (C++ function)

 	CharClassFunctions::GetClassSpecialization (C++ function)

 	CharClassFunctions::GetDefaultClass (C++ function)

 	CharClassFunctions::IsClassDefault (C++ function)

 	CharClassFunctions::SendClass (C++ function)

 	CharClassFunctions::SetClassDesc (C++ function)

 	CharClassFunctions::SetClassMajorAttribute (C++ function)

 	CharClassFunctions::SetClassMajorSkill (C++ function)

 	CharClassFunctions::SetClassMinorSkill (C++ function)

 	CharClassFunctions::SetClassName (C++ function)

 	CharClassFunctions::SetClassSpecialization (C++ function)

 	CharClassFunctions::SetDefaultClass (C++ function)

 	ChatFunctions (C++ class)

 	ChatFunctions::CleanChat (C++ function)

 	ChatFunctions::CleanChatForPid (C++ function)

 	ChatFunctions::SendMessage (C++ function)

D

 	
 	DialogueFunctions (C++ class)

 	DialogueFunctions::AddTopic (C++ function)

 	DialogueFunctions::ClearTopicChanges (C++ function)

 	DialogueFunctions::GetTopicChangesSize (C++ function)

 	
 	DialogueFunctions::GetTopicId (C++ function)

 	DialogueFunctions::PlayAnimation (C++ function)

 	DialogueFunctions::PlaySpeech (C++ function)

 	DialogueFunctions::SendTopicChanges (C++ function)

F

 	
 	FactionFunctions (C++ class)

 	FactionFunctions::AddFaction (C++ function)

 	FactionFunctions::ClearFactionChanges (C++ function)

 	FactionFunctions::GetFactionChangesAction (C++ function)

 	FactionFunctions::GetFactionChangesSize (C++ function)

 	FactionFunctions::GetFactionExpulsionState (C++ function)

 	FactionFunctions::GetFactionId (C++ function)

 	
 	FactionFunctions::GetFactionRank (C++ function)

 	FactionFunctions::GetFactionReputation (C++ function)

 	FactionFunctions::SendFactionChanges (C++ function)

 	FactionFunctions::SetFactionChangesAction (C++ function)

 	FactionFunctions::SetFactionExpulsionState (C++ function)

 	FactionFunctions::SetFactionId (C++ function)

 	FactionFunctions::SetFactionRank (C++ function)

 	FactionFunctions::SetFactionReputation (C++ function)

G

 	
 	GUIFunctions (C++ class)

 	GUIFunctions::_MessageBox (C++ function)

 	GUIFunctions::AddQuickKey (C++ function)

 	GUIFunctions::ClearQuickKeyChanges (C++ function)

 	GUIFunctions::CustomMessageBox (C++ function)

 	GUIFunctions::GetQuickKeyChangesSize (C++ function)

 	GUIFunctions::GetQuickKeyItemId (C++ function)

 	
 	GUIFunctions::GetQuickKeySlot (C++ function)

 	GUIFunctions::GetQuickKeyType (C++ function)

 	GUIFunctions::InputDialog (C++ function)

 	GUIFunctions::ListBox (C++ function)

 	GUIFunctions::PasswordDialog (C++ function)

 	GUIFunctions::SendQuickKeyChanges (C++ function)

 	GUIFunctions::SetMapVisibility (C++ function)

 	GUIFunctions::SetMapVisibilityAll (C++ function)

I

 	
 	ItemFunctions (C++ class)

 	ItemFunctions::AddItemChange (C++ function)

 	ItemFunctions::ClearInventoryChanges (C++ function)

 	ItemFunctions::EquipItem (C++ function)

 	ItemFunctions::GetEquipmentChangesSize (C++ function)

 	ItemFunctions::GetEquipmentChangesSlot (C++ function)

 	ItemFunctions::GetEquipmentItemCharge (C++ function)

 	ItemFunctions::GetEquipmentItemCount (C++ function)

 	ItemFunctions::GetEquipmentItemEnchantmentCharge (C++ function)

 	ItemFunctions::GetEquipmentItemRefId (C++ function)

 	ItemFunctions::GetEquipmentSize (C++ function)

 	ItemFunctions::GetInventoryChangesAction (C++ function)

 	ItemFunctions::GetInventoryChangesSize (C++ function)

 	ItemFunctions::GetInventoryItemCharge (C++ function)

 	
 	ItemFunctions::GetInventoryItemCount (C++ function)

 	ItemFunctions::GetInventoryItemEnchantmentCharge (C++ function)

 	ItemFunctions::GetInventoryItemRefId (C++ function)

 	ItemFunctions::GetInventoryItemSoul (C++ function)

 	ItemFunctions::GetUsedItemCharge (C++ function)

 	ItemFunctions::GetUsedItemCount (C++ function)

 	ItemFunctions::GetUsedItemEnchantmentCharge (C++ function)

 	ItemFunctions::GetUsedItemRefId (C++ function)

 	ItemFunctions::GetUsedItemSoul (C++ function)

 	ItemFunctions::HasItemEquipped (C++ function)

 	ItemFunctions::SendEquipment (C++ function)

 	ItemFunctions::SendInventoryChanges (C++ function)

 	ItemFunctions::SendItemUse (C++ function)

 	ItemFunctions::SetInventoryChangesAction (C++ function)

 	ItemFunctions::UnequipItem (C++ function)

M

 	
 	MechanicsFunctions (C++ class)

 	MechanicsFunctions::AddAlliedPlayerForPlayer (C++ function)

 	MechanicsFunctions::ClearAlliedPlayersForPlayer (C++ function)

 	MechanicsFunctions::DoesPlayerHavePlayerKiller (C++ function)

 	MechanicsFunctions::GetDrawState (C++ function)

 	MechanicsFunctions::GetMarkCell (C++ function)

 	MechanicsFunctions::GetMarkPosX (C++ function)

 	MechanicsFunctions::GetMarkPosY (C++ function)

 	MechanicsFunctions::GetMarkPosZ (C++ function)

 	MechanicsFunctions::GetMarkRotX (C++ function)

 	MechanicsFunctions::GetMarkRotZ (C++ function)

 	MechanicsFunctions::GetMiscellaneousChangeType (C++ function)

 	MechanicsFunctions::GetPlayerKillerMpNum (C++ function)

 	MechanicsFunctions::GetPlayerKillerName (C++ function)

 	MechanicsFunctions::GetPlayerKillerPid (C++ function)

 	MechanicsFunctions::GetPlayerKillerRefId (C++ function)

 	MechanicsFunctions::GetPlayerKillerRefNum (C++ function)

 	
 	MechanicsFunctions::GetSelectedSpellId (C++ function)

 	MechanicsFunctions::GetSneakState (C++ function)

 	MechanicsFunctions::Jail (C++ function)

 	MechanicsFunctions::Resurrect (C++ function)

 	MechanicsFunctions::SendAlliedPlayers (C++ function)

 	MechanicsFunctions::SendMarkLocation (C++ function)

 	MechanicsFunctions::SendSelectedSpell (C++ function)

 	MechanicsFunctions::SetMarkCell (C++ function)

 	MechanicsFunctions::SetMarkPos (C++ function)

 	MechanicsFunctions::SetMarkRot (C++ function)

 	MechanicsFunctions::SetSelectedSpellId (C++ function)

 	MiscellaneousFunctions (C++ class)

 	MiscellaneousFunctions::GenerateRandomString (C++ function)

 	MiscellaneousFunctions::GetCurrentMpNum (C++ function)

 	MiscellaneousFunctions::GetLastPlayerId (C++ function)

 	MiscellaneousFunctions::GetSHA256Hash (C++ function)

 	MiscellaneousFunctions::SetCurrentMpNum (C++ function)

O

 	
 	ObjectFunctions (C++ class)

 	ObjectFunctions::AddClientLocalFloat (C++ function)

 	ObjectFunctions::AddClientLocalInteger (C++ function)

 	ObjectFunctions::AddContainerItem (C++ function)

 	ObjectFunctions::AddObject (C++ function)

 	ObjectFunctions::ClearObjectList (C++ function)

 	ObjectFunctions::CopyReceivedObjectListToStore (C++ function)

 	ObjectFunctions::DoesObjectHaveContainer (C++ function)

 	ObjectFunctions::DoesObjectHavePlayerActivating (C++ function)

 	ObjectFunctions::DoesObjectHavePlayerHitting (C++ function)

 	ObjectFunctions::DoesObjectHavePlayerSummoner (C++ function)

 	ObjectFunctions::GetClientLocalFloatValue (C++ function)

 	ObjectFunctions::GetClientLocalInternalIndex (C++ function)

 	ObjectFunctions::GetClientLocalIntValue (C++ function)

 	ObjectFunctions::GetClientLocalsSize (C++ function)

 	ObjectFunctions::GetClientLocalVariableType (C++ function)

 	ObjectFunctions::GetContainerChangesSize (C++ function)

 	ObjectFunctions::GetContainerItemActionCount (C++ function)

 	ObjectFunctions::GetContainerItemCharge (C++ function)

 	ObjectFunctions::GetContainerItemCount (C++ function)

 	ObjectFunctions::GetContainerItemEnchantmentCharge (C++ function)

 	ObjectFunctions::GetContainerItemRefId (C++ function)

 	ObjectFunctions::GetContainerItemSoul (C++ function)

 	ObjectFunctions::GetObjectActivatingMpNum (C++ function)

 	ObjectFunctions::GetObjectActivatingName (C++ function)

 	ObjectFunctions::GetObjectActivatingPid (C++ function)

 	ObjectFunctions::GetObjectActivatingRefId (C++ function)

 	ObjectFunctions::GetObjectActivatingRefNum (C++ function)

 	ObjectFunctions::GetObjectCharge (C++ function)

 	ObjectFunctions::GetObjectCount (C++ function)

 	ObjectFunctions::GetObjectDialogueChoiceTopic (C++ function)

 	ObjectFunctions::GetObjectDialogueChoiceType (C++ function)

 	ObjectFunctions::GetObjectDoorState (C++ function)

 	ObjectFunctions::GetObjectEnchantmentCharge (C++ function)

 	ObjectFunctions::GetObjectGoldPool (C++ function)

 	ObjectFunctions::GetObjectGoldValue (C++ function)

 	ObjectFunctions::GetObjectHitBlock (C++ function)

 	ObjectFunctions::GetObjectHitDamage (C++ function)

 	ObjectFunctions::GetObjectHitKnockdown (C++ function)

 	ObjectFunctions::GetObjectHitSuccess (C++ function)

 	ObjectFunctions::GetObjectHittingMpNum (C++ function)

 	ObjectFunctions::GetObjectHittingName (C++ function)

 	ObjectFunctions::GetObjectHittingPid (C++ function)

 	ObjectFunctions::GetObjectHittingRefId (C++ function)

 	ObjectFunctions::GetObjectHittingRefNum (C++ function)

 	ObjectFunctions::GetObjectLastGoldRestockDay (C++ function)

 	ObjectFunctions::GetObjectLastGoldRestockHour (C++ function)

 	ObjectFunctions::GetObjectListAction (C++ function)

 	ObjectFunctions::GetObjectListClientScript (C++ function)

 	ObjectFunctions::GetObjectListConsoleCommand (C++ function)

 	ObjectFunctions::GetObjectListContainerSubAction (C++ function)

 	ObjectFunctions::GetObjectListOrigin (C++ function)

 	ObjectFunctions::GetObjectListSize (C++ function)

 	ObjectFunctions::GetObjectLockLevel (C++ function)

 	ObjectFunctions::GetObjectMpNum (C++ function)

 	ObjectFunctions::GetObjectPid (C++ function)

 	ObjectFunctions::GetObjectPosX (C++ function)

 	ObjectFunctions::GetObjectPosY (C++ function)

 	ObjectFunctions::GetObjectPosZ (C++ function)

 	ObjectFunctions::GetObjectRefId (C++ function)

 	ObjectFunctions::GetObjectRefNum (C++ function)

 	ObjectFunctions::GetObjectRotX (C++ function)

 	ObjectFunctions::GetObjectRotY (C++ function)

 	ObjectFunctions::GetObjectRotZ (C++ function)

 	ObjectFunctions::GetObjectScale (C++ function)

 	ObjectFunctions::GetObjectSoul (C++ function)

 	ObjectFunctions::GetObjectSoundId (C++ function)

 	ObjectFunctions::GetObjectState (C++ function)

 	ObjectFunctions::GetObjectSummonDuration (C++ function)

 	ObjectFunctions::GetObjectSummonEffectId (C++ function)

 	ObjectFunctions::GetObjectSummonerMpNum (C++ function)

 	ObjectFunctions::GetObjectSummonerPid (C++ function)

 	
 	ObjectFunctions::GetObjectSummonerRefId (C++ function)

 	ObjectFunctions::GetObjectSummonerRefNum (C++ function)

 	ObjectFunctions::GetObjectSummonSpellId (C++ function)

 	ObjectFunctions::GetObjectSummonState (C++ function)

 	ObjectFunctions::GetVideoFilename (C++ function)

 	ObjectFunctions::IsObjectDroppedByPlayer (C++ function)

 	ObjectFunctions::IsObjectPlayer (C++ function)

 	ObjectFunctions::ReadReceivedObjectList (C++ function)

 	ObjectFunctions::SendClientScriptLocal (C++ function)

 	ObjectFunctions::SendConsoleCommand (C++ function)

 	ObjectFunctions::SendContainer (C++ function)

 	ObjectFunctions::SendDoorDestination (C++ function)

 	ObjectFunctions::SendDoorState (C++ function)

 	ObjectFunctions::SendObjectActivate (C++ function)

 	ObjectFunctions::SendObjectDelete (C++ function)

 	ObjectFunctions::SendObjectDialogueChoice (C++ function)

 	ObjectFunctions::SendObjectLock (C++ function)

 	ObjectFunctions::SendObjectMiscellaneous (C++ function)

 	ObjectFunctions::SendObjectMove (C++ function)

 	ObjectFunctions::SendObjectPlace (C++ function)

 	ObjectFunctions::SendObjectRestock (C++ function)

 	ObjectFunctions::SendObjectRotate (C++ function)

 	ObjectFunctions::SendObjectScale (C++ function)

 	ObjectFunctions::SendObjectSound (C++ function)

 	ObjectFunctions::SendObjectSpawn (C++ function)

 	ObjectFunctions::SendObjectState (C++ function)

 	ObjectFunctions::SendObjectTrap (C++ function)

 	ObjectFunctions::SendVideoPlay (C++ function)

 	ObjectFunctions::SetContainerItemActionCountByIndex (C++ function)

 	ObjectFunctions::SetContainerItemCharge (C++ function)

 	ObjectFunctions::SetContainerItemCount (C++ function)

 	ObjectFunctions::SetContainerItemEnchantmentCharge (C++ function)

 	ObjectFunctions::SetContainerItemRefId (C++ function)

 	ObjectFunctions::SetContainerItemSoul (C++ function)

 	ObjectFunctions::SetObjectActivatingPid (C++ function)

 	ObjectFunctions::SetObjectCharge (C++ function)

 	ObjectFunctions::SetObjectCount (C++ function)

 	ObjectFunctions::SetObjectDialogueChoiceTopic (C++ function)

 	ObjectFunctions::SetObjectDialogueChoiceType (C++ function)

 	ObjectFunctions::SetObjectDisarmState (C++ function)

 	ObjectFunctions::SetObjectDoorDestinationCell (C++ function)

 	ObjectFunctions::SetObjectDoorDestinationPosition (C++ function)

 	ObjectFunctions::SetObjectDoorDestinationRotation (C++ function)

 	ObjectFunctions::SetObjectDoorState (C++ function)

 	ObjectFunctions::SetObjectDoorTeleportState (C++ function)

 	ObjectFunctions::SetObjectDroppedByPlayerState (C++ function)

 	ObjectFunctions::SetObjectEnchantmentCharge (C++ function)

 	ObjectFunctions::SetObjectGoldPool (C++ function)

 	ObjectFunctions::SetObjectGoldValue (C++ function)

 	ObjectFunctions::SetObjectLastGoldRestockDay (C++ function)

 	ObjectFunctions::SetObjectLastGoldRestockHour (C++ function)

 	ObjectFunctions::SetObjectListAction (C++ function)

 	ObjectFunctions::SetObjectListCell (C++ function)

 	ObjectFunctions::SetObjectListConsoleCommand (C++ function)

 	ObjectFunctions::SetObjectListContainerSubAction (C++ function)

 	ObjectFunctions::SetObjectListPid (C++ function)

 	ObjectFunctions::SetObjectLockLevel (C++ function)

 	ObjectFunctions::SetObjectMpNum (C++ function)

 	ObjectFunctions::SetObjectPosition (C++ function)

 	ObjectFunctions::SetObjectRefId (C++ function)

 	ObjectFunctions::SetObjectRefNum (C++ function)

 	ObjectFunctions::SetObjectRotation (C++ function)

 	ObjectFunctions::SetObjectScale (C++ function)

 	ObjectFunctions::SetObjectSoul (C++ function)

 	ObjectFunctions::SetObjectState (C++ function)

 	ObjectFunctions::SetObjectSummonDuration (C++ function)

 	ObjectFunctions::SetObjectSummonEffectId (C++ function)

 	ObjectFunctions::SetObjectSummonerMpNum (C++ function)

 	ObjectFunctions::SetObjectSummonerPid (C++ function)

 	ObjectFunctions::SetObjectSummonerRefNum (C++ function)

 	ObjectFunctions::SetObjectSummonSpellId (C++ function)

 	ObjectFunctions::SetObjectSummonState (C++ function)

 	ObjectFunctions::SetPlayerAsObject (C++ function)

P

 	
 	PositionFunctions (C++ class)

 	PositionFunctions::GetPosX (C++ function)

 	PositionFunctions::GetPosY (C++ function)

 	PositionFunctions::GetPosZ (C++ function)

 	PositionFunctions::GetPreviousCellPosX (C++ function)

 	PositionFunctions::GetPreviousCellPosY (C++ function)

 	PositionFunctions::GetPreviousCellPosZ (C++ function)

 	
 	PositionFunctions::GetRotX (C++ function)

 	PositionFunctions::GetRotZ (C++ function)

 	PositionFunctions::SendMomentum (C++ function)

 	PositionFunctions::SendPos (C++ function)

 	PositionFunctions::SetMomentum (C++ function)

 	PositionFunctions::SetPos (C++ function)

 	PositionFunctions::SetRot (C++ function)

Q

 	
 	QuestFunctions (C++ class)

 	QuestFunctions::AddJournalEntry (C++ function)

 	QuestFunctions::AddJournalEntryWithTimestamp (C++ function)

 	QuestFunctions::AddJournalIndex (C++ function)

 	QuestFunctions::ClearJournalChanges (C++ function)

 	QuestFunctions::GetJournalChangesSize (C++ function)

 	QuestFunctions::GetJournalItemActorRefId (C++ function)

 	
 	QuestFunctions::GetJournalItemIndex (C++ function)

 	QuestFunctions::GetJournalItemQuest (C++ function)

 	QuestFunctions::GetJournalItemType (C++ function)

 	QuestFunctions::GetReputation (C++ function)

 	QuestFunctions::SendJournalChanges (C++ function)

 	QuestFunctions::SendReputation (C++ function)

 	QuestFunctions::SetReputation (C++ function)

R

 	
 	RecordsDynamicFunctions (C++ class)

 	RecordsDynamicFunctions::AddRecord (C++ function)

 	RecordsDynamicFunctions::AddRecordBodyPart (C++ function)

 	RecordsDynamicFunctions::AddRecordEffect (C++ function)

 	RecordsDynamicFunctions::AddRecordInventoryItem (C++ function)

 	RecordsDynamicFunctions::ClearRecords (C++ function)

 	RecordsDynamicFunctions::GetRecordAutoCalc (C++ function)

 	RecordsDynamicFunctions::GetRecordBaseId (C++ function)

 	RecordsDynamicFunctions::GetRecordCharge (C++ function)

 	RecordsDynamicFunctions::GetRecordCost (C++ function)

 	RecordsDynamicFunctions::GetRecordCount (C++ function)

 	RecordsDynamicFunctions::GetRecordEffectArea (C++ function)

 	RecordsDynamicFunctions::GetRecordEffectAttribute (C++ function)

 	RecordsDynamicFunctions::GetRecordEffectCount (C++ function)

 	RecordsDynamicFunctions::GetRecordEffectDuration (C++ function)

 	RecordsDynamicFunctions::GetRecordEffectId (C++ function)

 	RecordsDynamicFunctions::GetRecordEffectMagnitudeMax (C++ function)

 	RecordsDynamicFunctions::GetRecordEffectMagnitudeMin (C++ function)

 	RecordsDynamicFunctions::GetRecordEffectRangeType (C++ function)

 	RecordsDynamicFunctions::GetRecordEffectSkill (C++ function)

 	RecordsDynamicFunctions::GetRecordEnchantmentCharge (C++ function)

 	RecordsDynamicFunctions::GetRecordEnchantmentId (C++ function)

 	RecordsDynamicFunctions::GetRecordFlags (C++ function)

 	RecordsDynamicFunctions::GetRecordIcon (C++ function)

 	RecordsDynamicFunctions::GetRecordId (C++ function)

 	RecordsDynamicFunctions::GetRecordModel (C++ function)

 	RecordsDynamicFunctions::GetRecordName (C++ function)

 	RecordsDynamicFunctions::GetRecordQuantity (C++ function)

 	RecordsDynamicFunctions::GetRecordScript (C++ function)

 	RecordsDynamicFunctions::GetRecordSubtype (C++ function)

 	RecordsDynamicFunctions::GetRecordType (C++ function)

 	RecordsDynamicFunctions::GetRecordValue (C++ function)

 	RecordsDynamicFunctions::GetRecordWeight (C++ function)

 	RecordsDynamicFunctions::SendRecordDynamic (C++ function)

 	RecordsDynamicFunctions::SetRecordAIAlarm (C++ function)

 	RecordsDynamicFunctions::SetRecordAIFight (C++ function)

 	RecordsDynamicFunctions::SetRecordAIFlee (C++ function)

 	RecordsDynamicFunctions::SetRecordAIServices (C++ function)

 	RecordsDynamicFunctions::SetRecordArmorRating (C++ function)

 	RecordsDynamicFunctions::SetRecordAutoCalc (C++ function)

 	RecordsDynamicFunctions::SetRecordBaseId (C++ function)

 	RecordsDynamicFunctions::SetRecordBloodType (C++ function)

 	RecordsDynamicFunctions::SetRecordBodyPartIdForFemale (C++ function)

 	RecordsDynamicFunctions::SetRecordBodyPartIdForMale (C++ function)

 	RecordsDynamicFunctions::SetRecordBodyPartType (C++ function)

 	RecordsDynamicFunctions::SetRecordCharge (C++ function)

 	RecordsDynamicFunctions::SetRecordClass (C++ function)

 	RecordsDynamicFunctions::SetRecordCloseSound (C++ function)

 	RecordsDynamicFunctions::SetRecordColor (C++ function)

 	RecordsDynamicFunctions::SetRecordCost (C++ function)

 	RecordsDynamicFunctions::SetRecordDamageChop (C++ function)

 	RecordsDynamicFunctions::SetRecordDamageSlash (C++ function)

 	RecordsDynamicFunctions::SetRecordDamageThrust (C++ function)

 	RecordsDynamicFunctions::SetRecordEffectArea (C++ function)

 	
 	RecordsDynamicFunctions::SetRecordEffectAttribute (C++ function)

 	RecordsDynamicFunctions::SetRecordEffectDuration (C++ function)

 	RecordsDynamicFunctions::SetRecordEffectId (C++ function)

 	RecordsDynamicFunctions::SetRecordEffectMagnitudeMax (C++ function)

 	RecordsDynamicFunctions::SetRecordEffectMagnitudeMin (C++ function)

 	RecordsDynamicFunctions::SetRecordEffectRangeType (C++ function)

 	RecordsDynamicFunctions::SetRecordEffectSkill (C++ function)

 	RecordsDynamicFunctions::SetRecordEnchantmentCharge (C++ function)

 	RecordsDynamicFunctions::SetRecordEnchantmentId (C++ function)

 	RecordsDynamicFunctions::SetRecordEnchantmentIdByIndex (C++ function)

 	RecordsDynamicFunctions::SetRecordFaction (C++ function)

 	RecordsDynamicFunctions::SetRecordFatigue (C++ function)

 	RecordsDynamicFunctions::SetRecordFlags (C++ function)

 	RecordsDynamicFunctions::SetRecordFloatVariable (C++ function)

 	RecordsDynamicFunctions::SetRecordGender (C++ function)

 	RecordsDynamicFunctions::SetRecordHair (C++ function)

 	RecordsDynamicFunctions::SetRecordHead (C++ function)

 	RecordsDynamicFunctions::SetRecordHealth (C++ function)

 	RecordsDynamicFunctions::SetRecordIcon (C++ function)

 	RecordsDynamicFunctions::SetRecordId (C++ function)

 	RecordsDynamicFunctions::SetRecordIdByIndex (C++ function)

 	RecordsDynamicFunctions::SetRecordIntegerVariable (C++ function)

 	RecordsDynamicFunctions::SetRecordInventoryBaseId (C++ function)

 	RecordsDynamicFunctions::SetRecordInventoryItemCount (C++ function)

 	RecordsDynamicFunctions::SetRecordInventoryItemId (C++ function)

 	RecordsDynamicFunctions::SetRecordKeyState (C++ function)

 	RecordsDynamicFunctions::SetRecordLevel (C++ function)

 	RecordsDynamicFunctions::SetRecordMagicka (C++ function)

 	RecordsDynamicFunctions::SetRecordMaxRange (C++ function)

 	RecordsDynamicFunctions::SetRecordMinRange (C++ function)

 	RecordsDynamicFunctions::SetRecordModel (C++ function)

 	RecordsDynamicFunctions::SetRecordName (C++ function)

 	RecordsDynamicFunctions::SetRecordOpenSound (C++ function)

 	RecordsDynamicFunctions::SetRecordQuality (C++ function)

 	RecordsDynamicFunctions::SetRecordRace (C++ function)

 	RecordsDynamicFunctions::SetRecordRadius (C++ function)

 	RecordsDynamicFunctions::SetRecordReach (C++ function)

 	RecordsDynamicFunctions::SetRecordScale (C++ function)

 	RecordsDynamicFunctions::SetRecordScript (C++ function)

 	RecordsDynamicFunctions::SetRecordScriptText (C++ function)

 	RecordsDynamicFunctions::SetRecordScrollState (C++ function)

 	RecordsDynamicFunctions::SetRecordSkillId (C++ function)

 	RecordsDynamicFunctions::SetRecordSoulValue (C++ function)

 	RecordsDynamicFunctions::SetRecordSound (C++ function)

 	RecordsDynamicFunctions::SetRecordSpeed (C++ function)

 	RecordsDynamicFunctions::SetRecordStringVariable (C++ function)

 	RecordsDynamicFunctions::SetRecordSubtype (C++ function)

 	RecordsDynamicFunctions::SetRecordText (C++ function)

 	RecordsDynamicFunctions::SetRecordTime (C++ function)

 	RecordsDynamicFunctions::SetRecordType (C++ function)

 	RecordsDynamicFunctions::SetRecordUses (C++ function)

 	RecordsDynamicFunctions::SetRecordValue (C++ function)

 	RecordsDynamicFunctions::SetRecordVampireState (C++ function)

 	RecordsDynamicFunctions::SetRecordVolume (C++ function)

 	RecordsDynamicFunctions::SetRecordWeight (C++ function)

S

 	
 	ServerFunctions (C++ class)

 	ServerFunctions::AddDataFileRequirement (C++ function)

 	ServerFunctions::BanAddress (C++ function)

 	ServerFunctions::DoesFilePathExist (C++ function)

 	ServerFunctions::GetArchitectureType (C++ function)

 	ServerFunctions::GetAvgPing (C++ function)

 	ServerFunctions::GetCaseInsensitiveFilename (C++ function)

 	ServerFunctions::GetDataFileEnforcementState (C++ function)

 	ServerFunctions::GetDataPath (C++ function)

 	ServerFunctions::GetIP (C++ function)

 	ServerFunctions::GetMaxPlayers (C++ function)

 	ServerFunctions::GetMillisecondsSinceServerStart (C++ function)

 	ServerFunctions::GetOperatingSystemType (C++ function)

 	ServerFunctions::GetPort (C++ function)

 	ServerFunctions::GetProtocolVersion (C++ function)

 	ServerFunctions::GetScriptErrorIgnoringState (C++ function)

 	ServerFunctions::GetServerVersion (C++ function)

 	ServerFunctions::HasPassword (C++ function)

 	ServerFunctions::Kick (C++ function)

 	ServerFunctions::LogAppend (C++ function)

 	ServerFunctions::LogMessage (C++ function)

 	ServerFunctions::SetDataFileEnforcementState (C++ function)

 	ServerFunctions::SetGameMode (C++ function)

 	ServerFunctions::SetHostname (C++ function)

 	ServerFunctions::SetRuleString (C++ function)

 	ServerFunctions::SetRuleValue (C++ function)

 	ServerFunctions::SetScriptErrorIgnoringState (C++ function)

 	ServerFunctions::SetServerPassword (C++ function)

 	ServerFunctions::StopServer (C++ function)

 	ServerFunctions::UnbanAddress (C++ function)

 	SettingFunctions (C++ class)

 	SettingFunctions::ClearGameSettingValues (C++ function)

 	SettingFunctions::ClearVRSettingValues (C++ function)

 	SettingFunctions::SendSettings (C++ function)

 	SettingFunctions::SetBedRestAllowed (C++ function)

 	SettingFunctions::SetConsoleAllowed (C++ function)

 	SettingFunctions::SetDifficulty (C++ function)

 	SettingFunctions::SetEnforcedLogLevel (C++ function)

 	SettingFunctions::SetGameSettingValue (C++ function)

 	SettingFunctions::SetPhysicsFramerate (C++ function)

 	SettingFunctions::SetVRSettingValue (C++ function)

 	SettingFunctions::SetWaitAllowed (C++ function)

 	SettingFunctions::SetWildernessRestAllowed (C++ function)

 	ShapeshiftFunctions (C++ class)

 	ShapeshiftFunctions::GetCreatureNameDisplayState (C++ function)

 	ShapeshiftFunctions::GetCreatureRefId (C++ function)

 	ShapeshiftFunctions::GetScale (C++ function)

 	ShapeshiftFunctions::IsWerewolf (C++ function)

 	ShapeshiftFunctions::SendShapeshift (C++ function)

 	ShapeshiftFunctions::SetCreatureNameDisplayState (C++ function)

 	ShapeshiftFunctions::SetCreatureRefId (C++ function)

 	ShapeshiftFunctions::SetScale (C++ function)

 	ShapeshiftFunctions::SetWerewolfState (C++ function)

 	SpellFunctions (C++ class)

 	SpellFunctions::AddCooldownSpell (C++ function)

 	SpellFunctions::AddSpell (C++ function)

 	SpellFunctions::AddSpellActive (C++ function)

 	SpellFunctions::AddSpellActiveEffect (C++ function)

 	SpellFunctions::ClearCooldownChanges (C++ function)

 	SpellFunctions::ClearSpellbookChanges (C++ function)

 	SpellFunctions::ClearSpellsActiveChanges (C++ function)

 	SpellFunctions::DoesSpellsActiveHavePlayerCaster (C++ function)

 	SpellFunctions::GetCooldownChangesSize (C++ function)

 	SpellFunctions::GetCooldownSpellId (C++ function)

 	SpellFunctions::GetCooldownStartDay (C++ function)

 	SpellFunctions::GetCooldownStartHour (C++ function)

 	SpellFunctions::GetSpellbookChangesAction (C++ function)

 	SpellFunctions::GetSpellbookChangesSize (C++ function)

 	SpellFunctions::GetSpellId (C++ function)

 	SpellFunctions::GetSpellsActiveCasterMpNum (C++ function)

 	SpellFunctions::GetSpellsActiveCasterPid (C++ function)

 	SpellFunctions::GetSpellsActiveCasterRefId (C++ function)

 	SpellFunctions::GetSpellsActiveCasterRefNum (C++ function)

 	SpellFunctions::GetSpellsActiveChangesAction (C++ function)

 	SpellFunctions::GetSpellsActiveChangesSize (C++ function)

 	SpellFunctions::GetSpellsActiveDisplayName (C++ function)

 	
 	SpellFunctions::GetSpellsActiveEffectArg (C++ function)

 	SpellFunctions::GetSpellsActiveEffectCount (C++ function)

 	SpellFunctions::GetSpellsActiveEffectDuration (C++ function)

 	SpellFunctions::GetSpellsActiveEffectId (C++ function)

 	SpellFunctions::GetSpellsActiveEffectMagnitude (C++ function)

 	SpellFunctions::GetSpellsActiveEffectTimeLeft (C++ function)

 	SpellFunctions::GetSpellsActiveId (C++ function)

 	SpellFunctions::GetSpellsActiveStackingState (C++ function)

 	SpellFunctions::SendCooldownChanges (C++ function)

 	SpellFunctions::SendSpellbookChanges (C++ function)

 	SpellFunctions::SendSpellsActiveChanges (C++ function)

 	SpellFunctions::SetSpellbookChangesAction (C++ function)

 	SpellFunctions::SetSpellsActiveChangesAction (C++ function)

 	StatsFunctions (C++ class)

 	StatsFunctions::ClearAttributeModifier (C++ function)

 	StatsFunctions::ClearSkillModifier (C++ function)

 	StatsFunctions::GetAttributeBase (C++ function)

 	StatsFunctions::GetAttributeCount (C++ function)

 	StatsFunctions::GetAttributeDamage (C++ function)

 	StatsFunctions::GetAttributeId (C++ function)

 	StatsFunctions::GetAttributeModifier (C++ function)

 	StatsFunctions::GetAttributeName (C++ function)

 	StatsFunctions::GetBirthsign (C++ function)

 	StatsFunctions::GetBounty (C++ function)

 	StatsFunctions::GetFatigueBase (C++ function)

 	StatsFunctions::GetFatigueCurrent (C++ function)

 	StatsFunctions::GetHairstyle (C++ function)

 	StatsFunctions::GetHead (C++ function)

 	StatsFunctions::GetHealthBase (C++ function)

 	StatsFunctions::GetHealthCurrent (C++ function)

 	StatsFunctions::GetIsMale (C++ function)

 	StatsFunctions::GetLevel (C++ function)

 	StatsFunctions::GetLevelProgress (C++ function)

 	StatsFunctions::GetMagickaBase (C++ function)

 	StatsFunctions::GetMagickaCurrent (C++ function)

 	StatsFunctions::GetModel (C++ function)

 	StatsFunctions::GetName (C++ function)

 	StatsFunctions::GetRace (C++ function)

 	StatsFunctions::GetSkillBase (C++ function)

 	StatsFunctions::GetSkillCount (C++ function)

 	StatsFunctions::GetSkillDamage (C++ function)

 	StatsFunctions::GetSkillId (C++ function)

 	StatsFunctions::GetSkillIncrease (C++ function)

 	StatsFunctions::GetSkillModifier (C++ function)

 	StatsFunctions::GetSkillName (C++ function)

 	StatsFunctions::GetSkillProgress (C++ function)

 	StatsFunctions::SendAttributes (C++ function)

 	StatsFunctions::SendBaseInfo (C++ function)

 	StatsFunctions::SendBounty (C++ function)

 	StatsFunctions::SendLevel (C++ function)

 	StatsFunctions::SendSkills (C++ function)

 	StatsFunctions::SendStatsDynamic (C++ function)

 	StatsFunctions::SetAttributeBase (C++ function)

 	StatsFunctions::SetAttributeDamage (C++ function)

 	StatsFunctions::SetBirthsign (C++ function)

 	StatsFunctions::SetBounty (C++ function)

 	StatsFunctions::SetCharGenStage (C++ function)

 	StatsFunctions::SetFatigueBase (C++ function)

 	StatsFunctions::SetFatigueCurrent (C++ function)

 	StatsFunctions::SetHairstyle (C++ function)

 	StatsFunctions::SetHead (C++ function)

 	StatsFunctions::SetHealthBase (C++ function)

 	StatsFunctions::SetHealthCurrent (C++ function)

 	StatsFunctions::SetIsMale (C++ function)

 	StatsFunctions::SetLevel (C++ function)

 	StatsFunctions::SetLevelProgress (C++ function)

 	StatsFunctions::SetMagickaBase (C++ function)

 	StatsFunctions::SetMagickaCurrent (C++ function)

 	StatsFunctions::SetModel (C++ function)

 	StatsFunctions::SetName (C++ function)

 	StatsFunctions::SetRace (C++ function)

 	StatsFunctions::SetResetStats (C++ function)

 	StatsFunctions::SetSkillBase (C++ function)

 	StatsFunctions::SetSkillDamage (C++ function)

 	StatsFunctions::SetSkillIncrease (C++ function)

 	StatsFunctions::SetSkillProgress (C++ function)

W

 	
 	WorldstateFunctions (C++ class)

 	WorldstateFunctions::AddCellToReset (C++ function)

 	WorldstateFunctions::AddClientGlobalFloat (C++ function)

 	WorldstateFunctions::AddClientGlobalInteger (C++ function)

 	WorldstateFunctions::AddDestinationOverride (C++ function)

 	WorldstateFunctions::AddEnforcedCollisionRefId (C++ function)

 	WorldstateFunctions::AddKill (C++ function)

 	WorldstateFunctions::AddSynchronizedClientGlobalId (C++ function)

 	WorldstateFunctions::AddSynchronizedClientScriptId (C++ function)

 	WorldstateFunctions::ClearCellsToReset (C++ function)

 	WorldstateFunctions::ClearClientGlobals (C++ function)

 	WorldstateFunctions::ClearDestinationOverrides (C++ function)

 	WorldstateFunctions::ClearEnforcedCollisionRefIds (C++ function)

 	WorldstateFunctions::ClearKillChanges (C++ function)

 	WorldstateFunctions::ClearMapChanges (C++ function)

 	WorldstateFunctions::ClearSynchronizedClientGlobalIds (C++ function)

 	WorldstateFunctions::ClearSynchronizedClientScriptIds (C++ function)

 	WorldstateFunctions::CopyReceivedWorldstateToStore (C++ function)

 	WorldstateFunctions::GetClientGlobalFloatValue (C++ function)

 	WorldstateFunctions::GetClientGlobalId (C++ function)

 	WorldstateFunctions::GetClientGlobalIntValue (C++ function)

 	WorldstateFunctions::GetClientGlobalsSize (C++ function)

 	WorldstateFunctions::GetClientGlobalVariableType (C++ function)

 	WorldstateFunctions::GetKillChangesSize (C++ function)

 	WorldstateFunctions::GetKillNumber (C++ function)

 	WorldstateFunctions::GetKillRefId (C++ function)

 	WorldstateFunctions::GetMapChangesSize (C++ function)

 	WorldstateFunctions::GetMapTileCellX (C++ function)

 	WorldstateFunctions::GetMapTileCellY (C++ function)

 	WorldstateFunctions::GetWeatherCurrent (C++ function)

 	WorldstateFunctions::GetWeatherNext (C++ function)

 	WorldstateFunctions::GetWeatherQueued (C++ function)

 	
 	WorldstateFunctions::GetWeatherRegion (C++ function)

 	WorldstateFunctions::GetWeatherTransitionFactor (C++ function)

 	WorldstateFunctions::LoadMapTileImageFile (C++ function)

 	WorldstateFunctions::ReadReceivedWorldstate (C++ function)

 	WorldstateFunctions::SaveMapTileImageFile (C++ function)

 	WorldstateFunctions::SendCellReset (C++ function)

 	WorldstateFunctions::SendClientScriptGlobal (C++ function)

 	WorldstateFunctions::SendClientScriptSettings (C++ function)

 	WorldstateFunctions::SendWorldCollisionOverride (C++ function)

 	WorldstateFunctions::SendWorldDestinationOverride (C++ function)

 	WorldstateFunctions::SendWorldKillCount (C++ function)

 	WorldstateFunctions::SendWorldMap (C++ function)

 	WorldstateFunctions::SendWorldRegionAuthority (C++ function)

 	WorldstateFunctions::SendWorldTime (C++ function)

 	WorldstateFunctions::SendWorldWeather (C++ function)

 	WorldstateFunctions::SetActorCollisionState (C++ function)

 	WorldstateFunctions::SetAuthorityRegion (C++ function)

 	WorldstateFunctions::SetDay (C++ function)

 	WorldstateFunctions::SetDaysPassed (C++ function)

 	WorldstateFunctions::SetHour (C++ function)

 	WorldstateFunctions::SetMonth (C++ function)

 	WorldstateFunctions::SetPlacedObjectCollisionState (C++ function)

 	WorldstateFunctions::SetPlayerCollisionState (C++ function)

 	WorldstateFunctions::SetTimeScale (C++ function)

 	WorldstateFunctions::SetWeatherCurrent (C++ function)

 	WorldstateFunctions::SetWeatherForceState (C++ function)

 	WorldstateFunctions::SetWeatherNext (C++ function)

 	WorldstateFunctions::SetWeatherQueued (C++ function)

 	WorldstateFunctions::SetWeatherRegion (C++ function)

 	WorldstateFunctions::SetWeatherTransitionFactor (C++ function)

 	WorldstateFunctions::SetYear (C++ function)

 	WorldstateFunctions::UseActorCollisionForPlacedObjects (C++ function)

 _static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to TES3MP’s documentation!

 		
 TES3MP’s Lua API reference

 		
 Actor functions

 		
 Book functions

 		
 Cell functions

 		
 Char class functions

 		
 Chat functions

 		
 Dialogue functions

 		
 Faction functions

 		
 GUI functions

 		
 Item functions

 		
 Mechanics functions

 		
 Miscellaneous functions

 		
 Object functions

 		
 Position functions

 		
 Quest functions

 		
 Records Dynamic functions

 		
 Server functions

 		
 Setting functions

 		
 Shapeshift functions

 		
 Spell functions

 		
 Stats functions

 		
 Worldstate functions

_static/file.png

